前言:想要寫出一篇引人入勝的文章?我們特意為您整理了淺談噴霧機的系統硬件設計與實驗范文,希望能給你帶來靈感和參考,敬請閱讀。
1系統硬件設計
系統硬件設計系統工作時,藥液由液壓泵泵出,經主管道及噴桿后由噴頭流出,通過轉換接頭流經流量傳感器,最后由藥液收集槽收集。為便于試驗記錄,將左側噴頭從上到下標記為噴頭1~噴頭3,右側噴頭從上到下標記為噴頭4~噴頭6。轉換接頭為自行設計的快捷轉換接頭。流量傳感器輸出頻率信號,信號經頻率轉電流模塊轉換為4~20mA電流信號,同時壓力傳感器輸出4~20mA電流信號,流量傳感器與壓力傳感器輸出的電流信號經4~20mA信號采集模塊采集后,由RS-485總線上傳至上位機界面顯示。本系統可同時顯示6路流量信號及1路壓力信號。流量傳感器選用GemsF6FT—110系列TurboFlow型流量傳感器,輸出頻率范圍58~575Hz;壓力傳感器選用WLB型壓力傳感器,輸出信號為4~20mA電流信號;頻率電流轉換模塊選用ART-阿爾泰A11FV11頻率/電壓、電流信號隔離轉換模塊,輸入為0~1kHz,0~10kHz和0~100kHz頻率信號,輸出為0~5V,0~10V電壓信號和0~20mA或4~20mA電流信號。本設計根據流量傳感器輸出信號選擇輸入檔位為0~1kHz,并根據信號采集模塊選擇輸出檔位為4~20mA;4~20mA電流采集模塊選用順源ISOADA08型采集模塊,可同時采集8路電流信號,通過RS-485總線上傳至上位機界面。若噴霧機噴頭較多,系統可對噴頭進行分批次測量。
本轉換接頭可分為固定架、螺桿和接頭體3部分。其中,固定架用于支撐接頭,并將接頭與噴頭位置進行固定;接頭體上端采用橡膠密封墊,可將噴頭與接頭接觸部位進行密封,橡膠密封墊通孔直徑為13mm,可用于測量多類噴霧機噴頭。測量時,將橡膠密封圈與噴頭噴嘴對接,卡鉤卡至噴頭上端,且保證兩卡鉤處于同一平面內,以保證密封性良好,旋轉螺桿使轉換接頭固定至噴頭上;藥液經噴頭體由膠管接頭引流至流量傳感器。本轉換接頭使用方便,操作簡單,用于對單個噴頭的測量;若噴霧機噴頭數量較多,可使用多個接頭進行測量。
2上位機軟件設計
系統上位機控制軟件采用C#編寫,使用VisualStudio2008開發平臺開發進行開發,可以運行于Win-dowsXP及以上環境。系統工作時,可根據不同試驗條件在上位機界面顯示不同的測量值。因本系統主要測量噴頭流量值,根據擬合方程中流量與電流的關系,設定最大電流值與最小電流值所對應流量值以及壓力值。系統啟動后,上位機界面實時顯示主管道壓力值以及噴頭1~6的流量值。數據采樣間隔可根據用戶要求進行設定,同時系統會將所采集數據在數據庫中進行存儲,可供試驗后期數據分析處理。為了獲得電流與流量關系曲線,試驗時選用SCL600型噴霧機ALBUZ-ATR80型噴頭,分別設定壓力為0.3,0.7,1.1,1.5MPa,使用秒表記錄測量時間,并測量在該時間范圍內由量筒收集的藥液體積,同時用萬用表測量輸出電流值,每個壓力值下測量3次,取平均值。
3試驗及結果分析
為測試本系統精度,試驗時選用SCL600型噴霧機所配置的ALBUZ-ATR80型噴頭進行試驗,記錄上位機界面所示流量值,同時用量筒測量一定時間流經流量傳感器的藥液體積,計算其平均流量(即實際流量),通過與試驗測量流量(即上位機所示流量)進行比較,得到系統精度。為了測試系統精度,以噴頭2為例,使用上位機軟件,以0.4MPa為間隔,在0.3~1.5MPa范圍內記錄上位機界面所示流量值,并測量在一定時間內量筒所收集的藥液體積。每個壓力下測量3次,取平均值。試驗數據表明,噴頭在不同壓力下流量不同,且隨著壓力的增加,流量逐漸增加;在流量為0.53~1.25L/m范圍內,噴頭平均流量與測量流量的最大相對誤差為4.40%。為了測試系統精度,選擇噴頭1、噴頭3及噴頭4進行試驗,使用上位機軟件,試驗設定壓力為0.7MPa。同時,記錄上位機界面所示流量值,并測量在一定時間內量筒收集的藥液體積,每組測量3次,取平均值,試驗數據表明:當壓力為0.7MPa時,各噴頭流量基本保持一致;當流量為0.83~0.91L/m時,噴頭平均流量與測量流量的最大相對誤差為3.88%。
4結論
本系統所設計的轉換接頭使用方便,密封性良好,對噴頭壽命影響較小,可便于系統同時對多類噴霧機噴頭流量快速測量,且系統操作方便,上位機界面可實時顯示各噴頭流量值,實現對噴霧機噴頭流量在線測量,測量精度較高。
作者:單位:西北農林科技大學機械與電子工程學院 國家農業信息化工程技術研究中心