• <input id="zdukh"></input>
  • <b id="zdukh"><bdo id="zdukh"></bdo></b>
      <b id="zdukh"><bdo id="zdukh"></bdo></b>
    1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

      <wbr id="zdukh"><table id="zdukh"></table></wbr>

      1. <input id="zdukh"></input>
        <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
        <sub id="zdukh"></sub>
        公務員期刊網 論文中心 正文

        數據挖掘在企業精準營銷服務的應用

        前言:想要寫出一篇引人入勝的文章?我們特意為您整理了數據挖掘在企業精準營銷服務的應用范文,希望能給你帶來靈感和參考,敬請閱讀。

        數據挖掘在企業精準營銷服務的應用

        【摘要】企業精準營銷服務是在充分了解客戶的基礎上,針對客戶特點及需求,有針對性地進行產品營銷的行為。大數據時代數據呈現井噴式爆炸性增長,不斷驅動企業大數據精準營銷的應用,數據挖掘成了企業從海量數據中獲取信息知識的必要技術手段。本文主要探討數據挖掘常見方法、挖掘過程及在企業精準營銷服務應用,以實際案例分析總結企業利用數據挖掘開展精準營銷工作更為合理的方法、流程。

        【關鍵詞】數據挖掘;方法論;精準營銷服務;策略

        一、引言

        大數據時代的來臨,數據呈現井噴式爆炸性增長。在海量數據中,隱藏著無數商業機會,但如何將大數據利用起來卻是一項艱巨的工作。在企業實施精準營銷服務過程中,面臨著客戶在哪?客戶有什么特征?客戶需要什么產品?如何進行有效營銷,提升客戶價值?我們在數據的海洋里淹死了,卻在知識的海洋里渴死了……而從龐大的數據中,借助合適的數據挖掘技術及工具,借助結合實際的數據挖掘方法,以客觀統計分析和挖掘算法挖掘出企業精準營銷服務的潛在目標用戶、用戶特征,同時匹配合適的營銷服務策略,可以顯著提升企業營銷服務精準度與成功率。

        二、數據挖掘方法

        數據挖掘工作本質上是一個解決實際業務問題的過程,需要有系統、科學的數據挖掘方法論來指導。業內主流的數據挖掘方法論有:歐盟機構聯合起草的CRISP-DM、SAS公司提出的SEMMA。CRISP-DM將數據挖掘分為6個階段,即商業理解(Busi-nessunderstanding)、數據理解(Dataunderstanding)、數據準備(Datapreparation)、建模(Modeling)、評估(Evaluation)、部署(Deployment)。而SEMMA將數據挖掘分為5個階段,即數據取樣(Sample)、數據特征探索、分析和預處理(Explore)、問題明確化、數據調整和技術選擇(Modify)、模型的研發、知識的發現(Model)、模型和知識的綜合解釋和評價(Assess)。從工作流程來看,CRISP-DM是從項目執行角度談的方法論,更關注與商業目標的結合,而SEMMA則是從具體數據探測和挖掘出發談的方法論,更關注數據探索的過程。但從具體工作內容來看,CRISP-DM和SEMMA本質上都是在數據挖掘應用中提出問題、分析問題和解決問題的過程。因此,CRISP-DM和SEMMA互不矛盾,只是強調的重點不同而已。結合企業實施數據挖掘工作的實踐經驗,經常采用PDMA數據挖掘方法。PDMA將數據挖掘分為4個階段,即定義業務問題(Problemdefinition)、數據準備(DataPreparation)、模型構建(ModelCreation)、模型應用(ModelApplication)。與CRISP-DM、SEMMA等相比,PDMA類似CRISP-DM,但又有較大差異。首先,PDMA將CRISP-DM的數據理解、數據準備做了提煉與分解。PDMA的數據準備是在滿足業務目標的前提下,確定挖掘建模的數據范圍,并構建生成寬表數據及核查數據準確性。PDMA的模型構建是在數據準備后,從數據集中采集業務問題相關的樣本數據集,探索數據的規律和趨勢,針對數據建模的數據集數據進行探索,選擇一種或幾種挖掘算法,進行模型構建及從技術和業務兩個角度進行模型評估。可見,PDMA的數據準備只負責建模挖掘寬表準備,數據探索包括衍生變量的生成、選擇等部分數據處理工作在模型構建階段實現,各階段間的工作分工也更為清晰。其次,PDMA的模型應用不僅僅是模型部署,還包括模型評分、模型監控與維護,確保當市場環境、用戶數據發生變化時,能及時判別在用的挖掘模型是否還有效、適用。對于不適用的挖掘模型及時調整優化,實現模型閉環管理。同時,PDMA的模型應用還強調模型輸出目標用戶的細分,及與市場營銷策略的匹配建議,幫助業務部門更好理解模型輸出及指導后續工作的開展。PDMA數據挖掘方法論是CRISP-DM、SEMMA等方法論的提煉優化。

        三、數據挖掘精準營銷應用

        隨著三大運營商全業務經營的迅猛發展,寬帶市場競爭激烈、市場日益飽和,越發呈現價格戰的競爭格局。借助大數據分析挖掘可精準識別寬帶營銷服務潛在目標客戶及特征,從而實現營銷服務有的放矢。

        1、定義業務問題

        (1)基于歷史數據挖掘過往寬帶營銷服務客戶寬帶使用特征、消費水平特征、上網偏好等,剖析營銷服務用戶的主要特征和原因,輸出潛在目標用戶清單。(2)在輸出潛在目標用戶清單的基礎上,對目標客戶進一步深入挖掘分群,剖析出不同人群客戶的寬帶使用、消費行為的典型特點,提出針對性營銷服務策略。(3)針對輸出的潛在目標用戶清單和分群制定具體的銷售策略,進行派單執行,跟蹤效果,做好下次模型迭代優化。

        2、數據準備

        數據準備是在滿足業務目標前提下,確定數據建模的數據范圍,描述和檢查這些數據,并構建建模寬表。針對寬帶用戶的行為特征,可以選取以下幾個數據維度:上網偏好維度、消費行為維度、產品及終端結構維度。其中,偏好類別數據主要利用DPI數據對用戶訪問的目標URL地址,進行多維度的統計計算后,得出的興趣類別標簽。輸入模型的變量要根據不同區域和每次預測的數據源動態調整。經過數據清洗、整理、派生,最終確定模型輸入變量時,主要依據對于模型輸出結果的影響顯著性選擇。

        3、模型構建

        模型構建就是在數據準備后,從數據集市中采集業務問題相關的樣本數據集,探索數據的規律和趨勢,針對數據建模的數據集數據進行修正,選擇一種或幾種挖掘方法,進行數據模型構建,從技術和業務兩個層面進行模型評估。通常情況下,主要以邏輯回歸和決策樹等作為建模主要方法,此類模型能輸出具體流失公式和規則。在進行用戶分群時,主要以聚類模型為主要方法,尋找不同類型用戶特征,制定分群針對性維系策略。

        4、模型應用

        在輸出潛在目標用戶清單的基礎上,對目標客戶進行分群。根據數據挖掘模型結果,寬帶營銷服務用戶可以分為以下5類:低需求型用戶、供給過剩型用戶、供給不足型用戶、長期高需求型用戶、短期高需求型用戶。基于分群后的目標用戶,可以針對性進行營銷服務策略匹配,如低需求型用戶可以采用寬帶資費優惠(如對上網少用戶采取特定的低資費),供給不足型用戶可以采用加快低寬帶客戶向高帶寬的遷移政策。最后進行派單執行,跟蹤效果。

        四、結束語

        大數據時代,由于信息技術的應用普及,產生了大量的數據,每年都以指數級速度增長。數據量大導致數據應用也會變得越來越困難,而借助合適的數據挖掘技術及工具,結合實際的數據挖掘方法,可以更加有效地提高數據的利用率,更深層次地挖掘出對企業精準營銷有價值的信息,實現對海量信息的掌控,讓企業實現更為精準的營銷服務。

        作者:陳慶波 單位:中電福富信息科技有限公司

        无码人妻一二三区久久免费_亚洲一区二区国产?变态?另类_国产精品一区免视频播放_日韩乱码人妻无码中文视频
      2. <input id="zdukh"></input>
      3. <b id="zdukh"><bdo id="zdukh"></bdo></b>
          <b id="zdukh"><bdo id="zdukh"></bdo></b>
        1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

          <wbr id="zdukh"><table id="zdukh"></table></wbr>

          1. <input id="zdukh"></input>
            <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
            <sub id="zdukh"></sub>
            中文字幕一区2区3区乱码在线 | 婷婷色五月开心综合 | 香蕉一区二区三区 | 日韩精品一品道精品在线观看 | 亚洲一区在线观看网站 | 日本免费高清一级性 |