前言:想要寫(xiě)出一篇引人入勝的文章?我們特意為您整理了高等數(shù)學(xué)中微積分經(jīng)濟(jì)的應(yīng)用范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。
摘要:隨著我國(guó)經(jīng)濟(jì)發(fā)展進(jìn)程不斷加快,科學(xué)技術(shù)水平不斷提升,我國(guó)逐漸轉(zhuǎn)向知識(shí)經(jīng)濟(jì)發(fā)展時(shí)代,數(shù)學(xué)科學(xué)的地位得到有效鞏固,呈現(xiàn)逐漸上升的趨勢(shì)。信息化進(jìn)程快速推進(jìn),經(jīng)濟(jì)理論中的定性分析方式逐漸變化為定量與定性相結(jié)合的分析方式,主要采用數(shù)據(jù)對(duì)其進(jìn)行深入論證以及證明。高等數(shù)學(xué)在經(jīng)濟(jì)發(fā)展進(jìn)程中起著關(guān)鍵的推動(dòng)作用。目前,我國(guó)各大高校已經(jīng)將高等數(shù)學(xué)應(yīng)用于多個(gè)專(zhuān)業(yè)領(lǐng)域之中,越來(lái)越多的人意識(shí)到可以采用高等數(shù)學(xué)的方式來(lái)對(duì)經(jīng)濟(jì)理論進(jìn)行深入解析。
關(guān)鍵詞:高等數(shù)學(xué)微積分經(jīng)濟(jì)應(yīng)用分析
高等數(shù)學(xué)逐漸被廣泛應(yīng)用在經(jīng)濟(jì)領(lǐng)域中,不僅為經(jīng)濟(jì)研究奠定了良好的基礎(chǔ),還成為一種具有科學(xué)性、合理性的技術(shù),在日常生活中起著不容小覷的作用。數(shù)學(xué)知識(shí)不僅貫穿于人們生產(chǎn)生活的發(fā)展始終,還被深入應(yīng)用于各大科技領(lǐng)域。高等數(shù)學(xué)中的微積分應(yīng)用較為寬廣,可以將其應(yīng)用于物理、經(jīng)濟(jì)、交通以及工程相關(guān)領(lǐng)域中。因此,在經(jīng)濟(jì)飛速發(fā)展的今天,將數(shù)學(xué)價(jià)值充分發(fā)揮出來(lái)成為一項(xiàng)重要任務(wù),讓學(xué)生全面利用與高等數(shù)學(xué)相關(guān)的知識(shí)分析社會(huì)中存在的經(jīng)濟(jì)現(xiàn)象成為一項(xiàng)關(guān)鍵內(nèi)容。
一、高等數(shù)學(xué)教學(xué)中存在的缺陷
高等數(shù)學(xué)中最顯著的特征是抽象性、邏輯性、應(yīng)用性。目前我國(guó)大學(xué)生普遍存在不愛(ài)學(xué)習(xí)高等的現(xiàn)象,沒(méi)有興趣進(jìn)行以后的高等數(shù)學(xué)學(xué)習(xí)。高校數(shù)學(xué)老師在考試前會(huì)為學(xué)生圈出重點(diǎn)內(nèi)容,幫助學(xué)生簡(jiǎn)單了解重點(diǎn)內(nèi)容,導(dǎo)致學(xué)生難以對(duì)其進(jìn)行深入學(xué)習(xí),學(xué)生經(jīng)常抱著60分萬(wàn)歲的心態(tài),嚴(yán)重缺乏積極主動(dòng)性。
二、高等數(shù)學(xué)中微積分的經(jīng)濟(jì)應(yīng)用
1.采用微積分進(jìn)行邊際分析
經(jīng)濟(jì)學(xué)經(jīng)常會(huì)出現(xiàn)邊際問(wèn)題,主要包括邊際成本、邊際收益、邊際利潤(rùn)等內(nèi)容。邊際問(wèn)題的實(shí)質(zhì)是問(wèn)題中涉及經(jīng)濟(jì)函數(shù)的變化率。如果一個(gè)函數(shù)用f(x)表示,那么其導(dǎo)函數(shù)就可以用f'(x)表示,導(dǎo)函數(shù)就成為該函數(shù)的邊際函數(shù)。對(duì)邊際函數(shù)中某一個(gè)點(diǎn)求值時(shí),這個(gè)值就成為這個(gè)邊際函數(shù)的邊際值。在實(shí)際問(wèn)題中經(jīng)常會(huì)給出總成本函數(shù)來(lái)求出邊際成本。邊際成本的求法是對(duì)總成本函數(shù)的產(chǎn)量進(jìn)行求導(dǎo),闡釋的經(jīng)濟(jì)內(nèi)涵為:當(dāng)產(chǎn)量為q時(shí)再生產(chǎn)一個(gè)單位所導(dǎo)致總成本增加的值;邊際收益的求法是對(duì)總收益函數(shù)中的銷(xiāo)售量來(lái)求導(dǎo),表達(dá)的經(jīng)濟(jì)內(nèi)涵是銷(xiāo)售量為q時(shí),再銷(xiāo)售一個(gè)單位所導(dǎo)致總收益增加的量;邊際利潤(rùn)是對(duì)總利潤(rùn)函數(shù)中的銷(xiāo)售量來(lái)求導(dǎo),包含的主要內(nèi)容是當(dāng)銷(xiāo)售量為q時(shí),對(duì)其銷(xiāo)售一個(gè)單位時(shí),總利潤(rùn)所增加的值。例如,某產(chǎn)品的需求函數(shù)為P=80-0.1x,成本函數(shù)為C(x)=5000+20x(元)。求邊際利潤(rùn)函數(shù)L'(x),分別求x=150和x=400時(shí)的邊際利潤(rùn)并說(shuō)出所表達(dá)的經(jīng)濟(jì)含義。解:根據(jù)已知題意,利潤(rùn)函數(shù)L(x)=需求量×價(jià)格-成本函數(shù)=x(80-0.1x)-(5000+20x)=-0.1x2+60x-5000,所以若想求出邊際利潤(rùn)函數(shù)就要對(duì)利潤(rùn)函數(shù)L(x)進(jìn)行求導(dǎo)工作,最終得出邊際利潤(rùn)函數(shù)L'(x)=-0.2x+60,故L'(x)丨(x=150)=-0.2×150+60=30,L'(x)丨(x=400)=-0.2×400+60=-20。當(dāng)x=150時(shí),表達(dá)的經(jīng)濟(jì)含義為:當(dāng)需求量為150時(shí),再增加一件利潤(rùn)將會(huì)增加30元。當(dāng)x=400時(shí),表達(dá)的經(jīng)濟(jì)含義為:當(dāng)需求量為400時(shí),再增加一件利潤(rùn)將會(huì)虧損20元。該例題可以全面反映出并不是消費(fèi)者的需求量增高就使企業(yè)獲得的利潤(rùn)額度一同升高,相反企業(yè)很有可能出現(xiàn)虧損。雖然例題中邊際利潤(rùn)、邊際成本、邊際收益等相關(guān)問(wèn)題的求解方式較簡(jiǎn)單,但將其應(yīng)用于實(shí)際生活中較難理解,而且在實(shí)際生活之中與邊際相關(guān)的問(wèn)題解決方式起著重要的作用。邊際革命在西方經(jīng)濟(jì)理論之中具有較高的價(jià)值意義,同時(shí)也是一種新的發(fā)展趨勢(shì)。分析價(jià)值意義時(shí),可以廣泛應(yīng)用邊際效用學(xué)說(shuō)以及計(jì)算邊際效益的方式,促使研究人員能夠?qū)r(jià)值效益進(jìn)行深入認(rèn)識(shí)與研究,全方面了解產(chǎn)品價(jià)值與邊際效用之間的直接聯(lián)系。對(duì)邊際概念進(jìn)行深入了解時(shí),可以采用高等數(shù)學(xué)中的微積分理念,使個(gè)人獲得最大收益以及能夠妥善處理經(jīng)濟(jì)均衡點(diǎn),最終促使邊際學(xué)說(shuō)被廣泛應(yīng)用于經(jīng)濟(jì)學(xué)理論的各大分支之中。邊際分析體現(xiàn)的實(shí)質(zhì)內(nèi)容是經(jīng)濟(jì)學(xué)家對(duì)數(shù)學(xué)以及心理學(xué)的全面整合,即微積分,充分利用微積分深入研究經(jīng)濟(jì)學(xué)相關(guān)理論內(nèi)容。因此,在從事相關(guān)經(jīng)濟(jì)工作時(shí),相關(guān)工作人員要采用合理且科學(xué)的措施處理相關(guān)邊際問(wèn)題,幫助企業(yè)決策人員做出正確的經(jīng)濟(jì)決策,為企業(yè)帶來(lái)良好的經(jīng)濟(jì)收益。
2.采用微積分開(kāi)展彈性分析
實(shí)際生活之中,我們不僅要對(duì)邊際絕對(duì)改變量以及絕對(duì)變化率進(jìn)行分析,還要對(duì)經(jīng)濟(jì)函數(shù)中的相對(duì)改變量以及變化率進(jìn)行深入研究。彈性分析主要研究的內(nèi)容是一項(xiàng)經(jīng)濟(jì)變量變動(dòng)百分之幾會(huì)對(duì)另一項(xiàng)經(jīng)濟(jì)變量帶來(lái)哪種影響,實(shí)際就是反映出兩者發(fā)生變化時(shí)對(duì)兩者敏感程度造成的影響。彈性分析不僅廣泛應(yīng)用于經(jīng)濟(jì)分析之中,在日常生活之中也被廣泛應(yīng)用。彈性公式為:E=數(shù)量的相對(duì)變動(dòng)÷價(jià)格的相對(duì)變動(dòng)。由于經(jīng)濟(jì)函數(shù)不同,彈性也不相同,而且彈性種類(lèi)較多,較為常見(jiàn)的就是需求價(jià)格彈性。在實(shí)際經(jīng)濟(jì)分析過(guò)程中,合理確定需求價(jià)格彈性有助于預(yù)測(cè)市場(chǎng)的走向趨勢(shì)以及定價(jià)策略的制定。若需求函數(shù)為Q=Q(p),則需求彈性為Ed=-dQ/dP×P/Q。當(dāng)需求彈性大于1時(shí),說(shuō)明商品需求富含彈性,即商品的需求量變化程度較高且高于價(jià)格的變動(dòng),這時(shí)可以采取降低價(jià)格的方式增加收入和需求量。當(dāng)需求彈性等于1時(shí),說(shuō)明商品需求彈性為單位彈性,表明商品需求量與價(jià)格變化同步,采取何種方式都不會(huì)對(duì)收入帶來(lái)影響。當(dāng)需求彈性小于1時(shí),說(shuō)明商品需求缺乏彈性,表明商品的需求量變化比價(jià)格變化程度低,這時(shí)可以采取提升價(jià)格的方式增加收入。根據(jù)需求彈性所表示的經(jīng)濟(jì)含義,商品需求彈性較高時(shí),需求量與價(jià)格之間發(fā)生變動(dòng)的程度較為敏感,銷(xiāo)售方可以采用降低價(jià)格的方式促進(jìn)消費(fèi)者消費(fèi),為企業(yè)帶來(lái)經(jīng)濟(jì)利益。當(dāng)商品需求組彈性較低時(shí),兩者之間的相互影響較為緩慢,銷(xiāo)售者可以適當(dāng)提升商品價(jià)格,降低因銷(xiāo)售量減少而對(duì)整體經(jīng)濟(jì)效益產(chǎn)生的不利影響。根據(jù)相關(guān)調(diào)查顯示,日常生活中必需品的需求價(jià)格彈性較低,而奢侈品、轎車(chē)等商品的需求價(jià)格彈性較高。
3.充分利用微積分求最值
在實(shí)際生活中對(duì)經(jīng)濟(jì)情況進(jìn)行分析時(shí)經(jīng)常會(huì)出現(xiàn)最大收益、最佳成本等相關(guān)問(wèn)題,在數(shù)學(xué)領(lǐng)域內(nèi)可以將這一系列的問(wèn)題歸類(lèi)為函數(shù)最值問(wèn)題,即求出邊際函數(shù)上邊際點(diǎn)的極值。最優(yōu)化理論不僅是經(jīng)濟(jì)決策者做出最優(yōu)方案的依據(jù),同時(shí)還是開(kāi)展經(jīng)濟(jì)分析時(shí)常用的原理。最優(yōu)化位置就是一切經(jīng)濟(jì)活動(dòng)均處于巔峰位置,在這一點(diǎn)的周?chē)幱谙禄厔?shì),因此必須用微積分中導(dǎo)數(shù)為零這一數(shù)學(xué)理論。例如,某廠每批生產(chǎn)A商品X臺(tái)的費(fèi)用為C(x)=5x+200(萬(wàn)元),所得收入為R(x)=10x-0.01x²(萬(wàn)元),問(wèn)每批生產(chǎn)多少臺(tái),才能使得利潤(rùn)達(dá)到最大?解:設(shè)利潤(rùn)為L(zhǎng)(x),則L(x)=R(x)-C(x)=5x-0.01x²-200,其次對(duì)L(x)求導(dǎo),得出L'(x)=5-0.02x,另L'(x)=0,得出X=250臺(tái),由于L''(x)=-0.02<0,因此,L(250)=425(萬(wàn)元)即為駐點(diǎn)和極大值,同時(shí)也就是最大值,當(dāng)X=250時(shí),最大利潤(rùn)為425萬(wàn)元。計(jì)算過(guò)程充分利用了微積分相關(guān)內(nèi)容來(lái)求出極值點(diǎn)。在實(shí)際生活之中,大幅度增加產(chǎn)量并不一定會(huì)增加利潤(rùn),只有確定恰當(dāng)?shù)纳a(chǎn)量才可以為企業(yè)帶來(lái)最佳利潤(rùn)。因此,一名優(yōu)秀的生產(chǎn)經(jīng)營(yíng)者要全面掌握數(shù)學(xué)相關(guān)原理以及計(jì)算方式,在經(jīng)營(yíng)決策過(guò)程中為相關(guān)工作人員提出合理意見(jiàn),幫助其做出正確的經(jīng)濟(jì)決策。
4.采用微積分方式分析經(jīng)濟(jì)總量及其變動(dòng)
對(duì)經(jīng)濟(jì)進(jìn)行深入分析時(shí),相關(guān)研究人員經(jīng)常采用微積分的方式綜合評(píng)價(jià)經(jīng)濟(jì)總量,幫助企業(yè)決策者制定正確的決策策略。例如,某類(lèi)產(chǎn)品的邊際成本為C'(x)=6+0.5x(萬(wàn)元\噸),固定成本C(0)=5萬(wàn)元,邊際收入為R'(x)=12-x(萬(wàn)元\噸),求得最大利潤(rùn)時(shí)的產(chǎn)量以及利潤(rùn)?解:總成本C(x)=C(0)+∫(6+0.5x)dx=0.25x²+6x+5,總收益函數(shù)R(x)=R(0)+∫(12-x)dx=-0.5x²+12x,所以總利潤(rùn)L(X)=R(X)-C(x)=-0.75x²+6x-5,所以對(duì)利潤(rùn)函數(shù)求導(dǎo)L'(x)=-1.5x+6,并且將導(dǎo)函數(shù)另為0,得出x=4,因此得出唯一駐點(diǎn),其就是極值點(diǎn)以及最值點(diǎn),最大利潤(rùn)L(4)=7(萬(wàn)元)這道試題將微積分中定積分方式與經(jīng)濟(jì)函數(shù)最大值問(wèn)題相聯(lián)系起來(lái),類(lèi)似例題中的相關(guān)情景經(jīng)常會(huì)出現(xiàn)在日常生活之中。學(xué)生要全面把握微積分相關(guān)知識(shí),一旦遇到類(lèi)似問(wèn)題,可以及時(shí)選取合適的數(shù)學(xué)方式予以解決,而且數(shù)學(xué)知識(shí)的合理運(yùn)用可以為經(jīng)濟(jì)發(fā)展注入積極力量。
三、結(jié)束語(yǔ)
綜上所述,高等數(shù)學(xué)中微積分在經(jīng)濟(jì)學(xué)中的應(yīng)用是非常廣泛的,在實(shí)際經(jīng)濟(jì)分析階段,應(yīng)用到的數(shù)學(xué)知識(shí)遠(yuǎn)遠(yuǎn)不止這些,還包括數(shù)學(xué)模型、優(yōu)化理論等。因此,越來(lái)越的國(guó)家將高等數(shù)學(xué)相關(guān)知識(shí)作為經(jīng)濟(jì)分析工具,促使經(jīng)濟(jì)分析變得更加準(zhǔn)確,有助于經(jīng)濟(jì)決策者做出合理的經(jīng)濟(jì)策略。
參考文獻(xiàn):
[1]吳贛昌,鞠淑范.高等數(shù)學(xué)在經(jīng)濟(jì)中的應(yīng)用[J].價(jià)值工程,2016
[2]李寶萍.高等數(shù)學(xué)在經(jīng)濟(jì)領(lǐng)域中的應(yīng)用探討[J].科教文匯學(xué),2017
[3]張清良.高等數(shù)學(xué)中微積分的經(jīng)濟(jì)應(yīng)用[J].經(jīng)濟(jì)視野,2017
[4]陸振剛.高等數(shù)學(xué)中微積分經(jīng)濟(jì)應(yīng)用探究[J].家教世界,2017
作者:李培 單位:江蘇師范大學(xué)