前言:想要寫出一篇引人入勝的文章?我們特意為您整理了數(shù)據(jù)挖掘電子商務論文范文,希望能給你帶來靈感和參考,敬請閱讀。
1數(shù)據(jù)挖掘技術和過程
1.1數(shù)據(jù)挖掘技術概述
發(fā)現(xiàn)的是用戶感興趣的知識;發(fā)現(xiàn)的知識應當能夠被接受、理解和運用。也就是發(fā)現(xiàn)全部相對的知識,是具有特定前提與條件,面向既定領域的,同時還容易被用戶接受。數(shù)據(jù)挖掘?qū)儆谝环N新型的商業(yè)信息處理技術,其特點為抽取、轉(zhuǎn)化、分析商業(yè)數(shù)據(jù)庫中的大規(guī)模業(yè)務數(shù)據(jù),從中獲得有價值的商業(yè)數(shù)據(jù)。簡單來說,其實數(shù)據(jù)挖掘是一種對數(shù)據(jù)進行深入分析的方法。因此,可以描述數(shù)據(jù)挖掘為:根據(jù)企業(yè)設定的工作目標,探索與分析企業(yè)大量數(shù)據(jù),充分揭示隱藏的、未知的規(guī)律性,并且將其轉(zhuǎn)變?yōu)榭茖W的方法。數(shù)據(jù)挖掘發(fā)現(xiàn)的最常見知識包括:
1.1.1廣義知識體現(xiàn)相同事物共同性質(zhì)的知識,是指類別特點的概括描述知識。按照數(shù)據(jù)的微觀特點對其表征的、具有普遍性的、極高概念層次的知識積極發(fā)現(xiàn),是對數(shù)據(jù)的高度精煉與抽象。發(fā)現(xiàn)廣義知識的方法與技術有很多,例如數(shù)據(jù)立方體和歸約等。
1.1.2關聯(lián)知識體現(xiàn)一個事件與其他事件之間形成的關聯(lián)知識。假如兩項或者更多項之間形成關聯(lián),則其中一項的屬性數(shù)值就能夠借助其他屬性數(shù)值實行預測。
1.1.3分類知識體現(xiàn)相同事物共同特點的屬性知識與不同事物之間差異特點知識。
1.2數(shù)據(jù)挖掘過程
1.2.1明確業(yè)務對象對業(yè)務問題清楚定義,了解數(shù)據(jù)挖掘的第一步是數(shù)據(jù)挖掘目的。挖掘結果是無法預測的,但是研究的問題是可預見的,僅為了數(shù)據(jù)挖掘而數(shù)據(jù)挖掘一般會體現(xiàn)出盲目性,通常也不會獲得成功?;谟脩籼卣鞯碾娮由虅諗?shù)據(jù)挖掘研究劉芬(惠州商貿(mào)旅游高級職業(yè)技術學校,廣東惠州516025)摘要:隨著互聯(lián)網(wǎng)的出現(xiàn),全球范圍內(nèi)電子商務正在迅速普及與發(fā)展,在這樣的環(huán)境下,電子商務數(shù)據(jù)挖掘技術應運而生。電子商務數(shù)據(jù)挖掘技術是近幾年來數(shù)據(jù)挖掘領域中的研究熱點,基于用戶特征的電子商務數(shù)據(jù)挖掘技術研究將會解決大量現(xiàn)實問題,為企業(yè)確定目標市場、完善決策、獲得最大競爭優(yōu)勢,其應用前景廣闊,促使電子商務企業(yè)更具有競爭力。主要分析了電子商務內(nèi)容、數(shù)據(jù)挖掘技術和過程、用戶細分理論,以及基于用戶特征的電子商務數(shù)據(jù)挖掘。
1.2.2數(shù)據(jù)準備第一選擇數(shù)據(jù):是按照用戶的挖掘目標,對全部業(yè)務內(nèi)外部數(shù)據(jù)信息積極搜索,從數(shù)據(jù)源中獲取和挖掘有關數(shù)據(jù)。第二預處理數(shù)據(jù):加工選取的數(shù)據(jù),具體對數(shù)據(jù)的完整性和一致性積極檢查,并且處理數(shù)據(jù)中的噪音,找出計算機丟失的數(shù)據(jù),清除重復記錄,轉(zhuǎn)化數(shù)據(jù)類型等。假如數(shù)據(jù)倉庫是數(shù)據(jù)挖掘的對象,則在產(chǎn)生數(shù)據(jù)庫過程中已經(jīng)形成了數(shù)據(jù)預處理。
1.2.3變換數(shù)據(jù)轉(zhuǎn)換數(shù)據(jù)為一個分析模型。這一分析模型是相對于挖掘算法構建的。構建一個與挖掘算法適合的分析模型是數(shù)據(jù)挖掘獲得成功的重點??梢岳猛队皵?shù)據(jù)庫的相關操作對數(shù)據(jù)維度有效降低,進一步減少數(shù)據(jù)挖掘過程中數(shù)據(jù)量,提升挖掘算法效率。
1.2.4挖掘數(shù)據(jù)挖掘獲得的經(jīng)濟轉(zhuǎn)化的數(shù)據(jù)。除了對選擇科學挖掘算法積極完善之外,其余全部工作都自行完成。整體挖掘過程都是相互的,也就是用戶對某些挖掘參數(shù)能夠積極控制。
1.2.5評價挖掘結果這個過程劃分為兩個步驟:表達結果和評價結果。第一表達結果:用戶能夠理解數(shù)據(jù)挖掘得到的模式,可以通過可視化數(shù)據(jù)促使用戶對挖掘結果積極理解。第二評價結果:用戶與機器對數(shù)據(jù)挖掘獲得的模式有效評價,對冗余或者無關的模式及時刪除。假如用戶不滿意挖掘模式,可以重新挑選數(shù)據(jù)和挖掘算法對挖掘過程科學執(zhí)行,直到獲得用戶滿意為止。
2用戶細分理論
用戶細分是指按照不同用戶的屬性劃分用戶集合。目前學術界和企業(yè)界一般接受的是基于用戶價值的細分理論,其不僅包含了用戶為企業(yè)貢獻歷史利潤,還包含未來利潤,也就是在未來用戶為企業(yè)可能帶來的利潤總和。基于用戶價值的細分理論選擇客戶當前價值與客戶潛在價值兩個因素評價用戶。用戶當前價值是指截止到目前用戶對企業(yè)貢獻的總體價值;用戶潛在價值是指未來用戶可能為企業(yè)創(chuàng)造的價值總和。每個因素還能夠劃分為兩個高低檔次,進一步產(chǎn)生一個二維的矩陣,把用戶劃分為4組,價值用戶、次價值用戶、潛在價值用戶、低價值用戶。企業(yè)在推廣過程中根據(jù)不同用戶應當形成對應的方法,投入不同的資源。很明顯對于企業(yè)來說價值用戶最重要,被認為是企業(yè)的玉質(zhì)用戶;其次是次價值用戶,被認為是金質(zhì)用戶,雖然數(shù)量有限,卻為企業(yè)創(chuàng)造了絕大部分的利潤;其他則是低價值用戶,對企業(yè)來說價值最小,成為鉛質(zhì)用戶,另外一類則是潛在價值用戶。雖然這兩類用戶擁有較多的數(shù)量,但是為企業(yè)創(chuàng)造的價值有限,甚至很小。需要我們注意的是潛在價值用戶利用再造用戶關系,將來極有可能變成價值用戶。從長期分析,潛在價值用戶可以是企業(yè)的隱形財富,是企業(yè)獲得利潤的基礎。將采用數(shù)據(jù)挖掘方法對這4類用戶特點有效挖掘。
3電子商務數(shù)據(jù)挖掘分析
3.1設計問卷
研究的關鍵是電子商務用戶特征的數(shù)據(jù)挖掘,具體包含了價值用戶特征、次價值用戶特征、潛在價值用戶特征,對電子商務用戶的認知度、用戶的需求度分析。問卷內(nèi)容包括3部分:其一是為被調(diào)查者介紹電子商務的概念與背景;其二是具體調(diào)查被調(diào)查對象的個人信息,包含了性別、年齡、學歷、感情情況、職業(yè)、工作、生活地點、收入、上網(wǎng)購物經(jīng)歷;其三是問卷主要部分,是對用戶對電子商務的了解、需求、使用情況的指標設計。
3.2調(diào)查方式
本次調(diào)查的問卷主體是電腦上網(wǎng)的人群,采用隨機抽象的方式進行網(wǎng)上訪問。一方面采用大眾聊天工具,利用電子郵件和留言的方式發(fā)放問卷,另一方面在大眾論壇上邀請其填寫問卷。
3.3數(shù)據(jù)挖掘和結果
(1)選擇數(shù)據(jù)挖掘的算法利用Clementine數(shù)據(jù)挖掘軟件,采用C5.O算法挖掘預處理之后數(shù)據(jù)。
(2)用戶數(shù)據(jù)分析
1)電子商務用戶認知度分析按照調(diào)查問卷的問題“您知道電子商務嗎?”得到對電子商務用戶認知情況的統(tǒng)計,十分了解20.4%,了解30.1%,聽過但不了解具體使用方法40.3%,從未聽過8.9%。很多人僅聽過電子商務,但是并不清楚具體的功能與應用方法,甚至有一小部分人沒有聽過電子商務。對調(diào)查問卷問題“您聽過電子商務的渠道是什么?”,大部分用戶是利用網(wǎng)了解電子商務的,占40.2%;僅有76人是利用紙質(zhì)報刊雜志上知道電子商務的并且對其進行應用;這也表明相較于網(wǎng)絡宣傳紙質(zhì)媒體推廣電子商務的方法缺乏有效性。
2)電子商務用戶需求用戶希求具體是指使用產(chǎn)品服務人員對應用產(chǎn)品或服務形成的需求或者期望。按照問題“假如你曾經(jīng)使用電子商務,你覺得其用途怎樣,假如沒有使用過,你覺得其對自己有用嗎?”得到了認為需要和十分需要的數(shù)據(jù),覺得電子商務有用的用戶為40.7%,不清楚是否對自己有用的用戶為56.7%,認為不需要的僅有2.4%。
3)電子商務用戶應用意愿應用意愿是指消費者對某一產(chǎn)品服務進行應用或者購買的一種心理欲望。按照問題“假如可以滿足你所關心的因素,未來你會繼續(xù)應用電子商務嗎?”獲得的數(shù)據(jù)可知,在滿足各種因素時,將來一年之內(nèi)會應用電子商務的用戶為78.2%,一定不會應用電子商務的用戶為1.4%。表明用戶形成了較為強烈的應用電子商務欲望,電子商務發(fā)展前景很好。基于用戶特征的電子商務數(shù)據(jù)研究,電子商務企業(yè)通過這一結果能夠更好地實行營銷和推廣,對潛在用戶積極定位,提高用戶體驗,積極挖掘用戶價值。分析為企業(yè)準確營銷和推廣企業(yè)提供了一個有效的借鑒。
4結語
互聯(lián)網(wǎng)中數(shù)據(jù)是最寶貴的資源之一,大量數(shù)據(jù)中包含了很大的潛在價值,對這些數(shù)據(jù)深入挖掘?qū)ヂ?lián)網(wǎng)商務、企業(yè)推廣、傳播信息發(fā)揮了巨大的作用。近些年來,數(shù)據(jù)挖掘技術獲得了信息產(chǎn)業(yè)的極大重視,具體原因是出現(xiàn)了大量的數(shù)據(jù),能夠廣泛應用,并且需要轉(zhuǎn)化數(shù)據(jù)成為有價值的信息知識。通過基于用戶特征的電子商務數(shù)據(jù)挖掘研究,促使電子商務獲得巨大發(fā)展機會,發(fā)現(xiàn)潛在用戶,促使電子商務企業(yè)精準營銷。
作者:劉芬 單位:惠州商貿(mào)旅游高級職業(yè)技術學校