前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的考試成績(jī)分析主題范文,僅供參考,歡迎閱讀并收藏。
本次試卷共120分,與中考要求一致,覆蓋面較廣,涉及題型多。有對(duì)基礎(chǔ)知識(shí)的考察(如字音字形、詞語(yǔ)釋義、排序、語(yǔ)病及古詩(shī)文默寫(xiě)),也有對(duì)閱讀能力的考察(包括文言文和現(xiàn)代文),還有對(duì)學(xué)生寫(xiě)作能力的考察(如作文)以及綜合性學(xué)習(xí)和名著導(dǎo)讀的考察。
二、學(xué)情分析
經(jīng)過(guò)半學(xué)期的學(xué)習(xí),學(xué)生已經(jīng)漸漸適應(yīng)了初中的學(xué)習(xí)習(xí)慣和學(xué)習(xí)方法,對(duì)于初中的做題思路慢慢熟悉,所以有許多學(xué)生的成績(jī)考得還是比較理想,但也有一部分學(xué)生還需要教師在以后的教學(xué)中作進(jìn)一步的引導(dǎo),爭(zhēng)取讓全部學(xué)生盡早適應(yīng)初中生活和學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生的做題能力。
三、成績(jī)分析
對(duì)于這次期中考試,我在考前兩個(gè)星期進(jìn)行了系統(tǒng)的分版塊的給學(xué)生復(fù)習(xí)備考,從基礎(chǔ)知識(shí)、課內(nèi)現(xiàn)代文的閱讀、課內(nèi)文言文、詩(shī)歌鑒賞和名著閱讀以及語(yǔ)言綜合運(yùn)用等方面一一復(fù)習(xí),共做測(cè)試題8套。閱卷時(shí)感覺(jué)不太好,系統(tǒng)顯示平均分75.8分,比(2)班高了將近10分,倍感欣慰,但新的考核辦法計(jì)算結(jié)果為負(fù)值,這個(gè)成績(jī)是我沒(méi)有想到的。我感到深深的自責(zé),在反思的過(guò)程中我看到了自己在語(yǔ)文教學(xué)中存在的諸多問(wèn)題。
第一,重點(diǎn)字詞和讀音很多同學(xué)沒(méi)有真正的掌握,出現(xiàn)記憶模糊和含混不清的情況。就拿這次的選擇題來(lái)說(shuō),前兩道都是我們講過(guò)的原題,但是班上仍然還是有一大部分同學(xué)選錯(cuò),按照我的要求,基礎(chǔ)知識(shí)的字音字形題是堅(jiān)決不能出錯(cuò)的,但是很多人抄了很多次卻沒(méi)有真正的記在大腦里。
第二、懶惰的思維方式,不愛(ài)思考。對(duì)詩(shī)歌鑒賞和課外文言文束手無(wú)策。大部分學(xué)生碰到這一類(lèi)需要思考的題,都不知道該怎么做,即使講試卷和練習(xí)冊(cè)的時(shí)候教給他們方法了仍然還是要執(zhí)著自己的思維模式,更有甚者直接空著不做。這就造成大面積的失分嚴(yán)重。我一再的要求他們,語(yǔ)文學(xué)科和其他學(xué)科不同,即使你實(shí)在不會(huì)做,那你想到什么就寫(xiě)什么,無(wú)論如何堅(jiān)決不能給我空著,但是顯然這方面對(duì)于一些基礎(chǔ)差的學(xué)生說(shuō)了也是白說(shuō)。另外一方面就是,對(duì)課內(nèi)老師要求掌握和默寫(xiě)的古詩(shī)詞和重點(diǎn)句段沒(méi)有落實(shí)在筆頭,造成送分的題也失分的情況。
第三、對(duì)于課外現(xiàn)代文的解讀大多停留在表面,答題時(shí)不知所云,也不注重答題格式和答題技巧,分值較重的題大約十多個(gè)字就濃縮完了。對(duì)于需要遷移思考的問(wèn)題大多數(shù)就亂答或者不答。
第四、作文出現(xiàn)審題偏差,不認(rèn)真讀題等現(xiàn)象。明明是命題作文,卻要自擬題目。大部分同學(xué)不知道作文應(yīng)該怎么寫(xiě),多是一些口水話(huà),對(duì)于好詞佳句的運(yùn)用只限于有一定文學(xué)功底的優(yōu)生。
第五、普遍存在字跡潦草,書(shū)寫(xiě)不規(guī)范的情況,有些學(xué)生寫(xiě)的字根本讓閱卷老師無(wú)法辨認(rèn)。更有一些學(xué)生,答題卡出現(xiàn)多處涂改,抹黑、題號(hào)答錯(cuò)等現(xiàn)象。
第六、某些同學(xué)對(duì)時(shí)間把握不到位,出現(xiàn)后面容易得分的題空著不做的情況。正是因?yàn)檫@些情況的出現(xiàn),才造成了這次考試不是那么理想。
當(dāng)然,除了上述情況外,還有一些客觀(guān)的原因:比如說(shuō)大部分學(xué)生的基礎(chǔ)本來(lái)就不是很好,對(duì)待語(yǔ)文學(xué)科的學(xué)習(xí)習(xí)慣和方法不明確;態(tài)度不端正,上課不認(rèn)真聽(tīng)講,發(fā)呆、走神、聽(tīng)課質(zhì)量低,沒(méi)有良好的自覺(jué)性和好學(xué)心理;更有甚者是長(zhǎng)期不交家庭作業(yè),家長(zhǎng)也不管等情況。這就給提高語(yǔ)文成績(jī)?cè)斐闪撕芏嗾系K性的因素。
通過(guò)這次考試,我應(yīng)當(dāng)積極引導(dǎo)學(xué)生認(rèn)清自己的情況,在今后學(xué)習(xí)中及時(shí)調(diào)整。七(1)班有很多學(xué)生對(duì)學(xué)習(xí)不感興趣、學(xué)習(xí)習(xí)慣差或是學(xué)習(xí)能力不足。針對(duì)學(xué)生出現(xiàn)的一些問(wèn)題,開(kāi)學(xué)以來(lái)我也采取了一些相應(yīng)的措施:
第一,常抓字詞;針對(duì)基礎(chǔ)差的學(xué)生,我采取每學(xué)一課就在課堂上至少聽(tīng)寫(xiě)2次的方法,聽(tīng)寫(xiě)的時(shí)間我會(huì)在頭一天告訴他們,然后課前三到五分鐘聽(tīng)寫(xiě),第一次同桌交換改,第二次聽(tīng)寫(xiě)全班交上來(lái)我改。
第二,重視晨誦;每次課前就把任務(wù)寫(xiě)在黑板上,這樣學(xué)生就能清楚明白的知道自己應(yīng)該掌握的知識(shí)和課文。
第三,跟緊經(jīng)常不交作業(yè)的學(xué)生,上課經(jīng)常抽那些語(yǔ)文成績(jī)差的學(xué)生,即使他回答不上來(lái),但是卻可以通過(guò)這種方式讓他隨時(shí)都有緊迫感,迫使他認(rèn)真聽(tīng)課和學(xué)習(xí)。
第四,對(duì)待班上懶惰不好學(xué)的學(xué)生,實(shí)行必要的懲戒教育,我說(shuō)過(guò)我能忍受你學(xué)了不會(huì),但我不能忍受學(xué)都不學(xué)就說(shuō)學(xué)不會(huì),否則既影響班上的總體成績(jī),也影響班上的學(xué)習(xí)氛圍。
第五,對(duì)于班上語(yǔ)文成績(jī)和能力稍微好一點(diǎn)的學(xué)生,就嚴(yán)格的抓他們的答題格式和答題方法,規(guī)范他們的書(shū)寫(xiě),讓他們?cè)谄綍r(shí)學(xué)習(xí)和作業(yè)的情況下時(shí)時(shí)刻刻注意提升和完善自己的答題技巧。
關(guān)鍵詞: SPSS13.0統(tǒng)計(jì)軟件 大學(xué)英語(yǔ)考試成績(jī) 應(yīng)用
1.引言
社會(huì)科學(xué)統(tǒng)計(jì)大型軟件包SPSS13.0具有操作簡(jiǎn)單、靈活、功能性強(qiáng)等特點(diǎn)。作為一種有效的統(tǒng)計(jì)工具,在教育統(tǒng)計(jì)中所發(fā)揮的作用越來(lái)越大。在教學(xué)中,教師常需要進(jìn)行諸如考試成績(jī)等的統(tǒng)計(jì)分析,以評(píng)估學(xué)生的學(xué)習(xí),及時(shí)調(diào)整教學(xué)。SPSS13.0統(tǒng)計(jì)軟件能夠代替?zhèn)鹘y(tǒng)的手工計(jì)算方法,方便快捷,可以輕松地進(jìn)行多種數(shù)據(jù)統(tǒng)計(jì)和分析。
我通過(guò)運(yùn)用SPSS13.0統(tǒng)計(jì)軟件對(duì)我校2010級(jí)某班級(jí)按照學(xué)號(hào)選取的前30名學(xué)生的大學(xué)英語(yǔ)A(1)課程期末考試成績(jī)進(jìn)行了統(tǒng)計(jì)分析。在此之前,我已把選取的30名學(xué)生考試成績(jī)的各項(xiàng)數(shù)據(jù)分為性別、聽(tīng)力、聽(tīng)寫(xiě)、閱讀、詞匯、寫(xiě)作和總成績(jī)7項(xiàng),輸入SPSS13.0統(tǒng)計(jì)軟件。
本研究主要是用SPSS13.0統(tǒng)計(jì)分析軟件從二元變量相關(guān)分析、雙因素混合實(shí)驗(yàn)設(shè)計(jì)方差分析與多組配對(duì)檢驗(yàn)等角度對(duì)本次大學(xué)英語(yǔ)A(1)成績(jī)進(jìn)行分析,以期從分析數(shù)據(jù)中發(fā)現(xiàn)問(wèn)題并在今后的大學(xué)英語(yǔ)教學(xué)中進(jìn)行教學(xué)方法或策略的改進(jìn)或調(diào)整,從而有效地增強(qiáng)大學(xué)英語(yǔ)教學(xué)效果。
2.二元變量相關(guān)分析(Bivariate)
相關(guān)分析(Correlation)是研究一個(gè)變量與另一個(gè)變量間的相互關(guān)系,研究變量間相互關(guān)系的性質(zhì)和緊密程度。換句話(huà)講,相關(guān)分析的任務(wù)就是對(duì)相關(guān)關(guān)系給予定量的描述。相關(guān)系數(shù)(correlation coefficient)又叫積差相關(guān)系數(shù)(product moment coefficient of correlation),用符號(hào)“r”表示,一般按“r”的絕對(duì)值大小,規(guī)定統(tǒng)計(jì)學(xué)中低于0.40以下的相關(guān)系數(shù)為低相關(guān);0.40―0.70為較顯著相關(guān);0.70―0.90為顯著相關(guān);0.90―1則為最高相關(guān)(胡健穎、馮泰,2002)。
而二元變量相關(guān)分析方法可以研究?jī)蓚€(gè)觀(guān)測(cè)量之間的單相關(guān)關(guān)系。如果在實(shí)際運(yùn)用中,研究的是多個(gè)自變量與一個(gè)因變量的復(fù)相關(guān)關(guān)系,則應(yīng)該抓住其中的主要因素,把復(fù)相關(guān)轉(zhuǎn)化為單相關(guān)來(lái)進(jìn)行研究。調(diào)用Bivariate過(guò)程命令可以允許同時(shí)輸入兩個(gè)或者兩個(gè)以上的變量,但是輸出的是變量間兩兩相關(guān)的相關(guān)系數(shù)。
在雙變量相關(guān)分析中,對(duì)于正態(tài)分布資料,可選擇積矩相關(guān)系數(shù)(Pearson相關(guān)系數(shù));對(duì)于非正態(tài)分布資料,可選擇等級(jí)相關(guān)系數(shù)(Spearman相關(guān)系數(shù))或Kendall相關(guān)系數(shù)等非參數(shù)方法,在本次統(tǒng)計(jì)分析中,我首先檢驗(yàn)性別、聽(tīng)力、聽(tīng)寫(xiě)、閱讀、詞匯、寫(xiě)作和總成績(jī)7個(gè)變量之間兩兩相關(guān)情況。
步驟一:讀取數(shù)據(jù)(score analysis.sav),打開(kāi)analyze-correlate-bivariate;
步驟二:將變量性別、聽(tīng)力、聽(tīng)寫(xiě)、閱讀、詞匯、寫(xiě)作和總成績(jī)選入到variables,在correlation coefficients中選pearson,在test of significance 中選two-tailed;
步驟三:?jiǎn)螕鬿ption,在statistics中選means and standard deviations,在單擊continue;
步驟四:?jiǎn)螕鬙K。
表1數(shù)據(jù)表明,在本次考試中,所選取30名學(xué)生的聽(tīng)寫(xiě)成績(jī)的標(biāo)準(zhǔn)差(standard deviation)是2.61868為最大,而寫(xiě)作成績(jī)的標(biāo)準(zhǔn)差是1.35782,為最小。
分析:標(biāo)準(zhǔn)差越大,說(shuō)明離散程度越大,數(shù)據(jù)就越不均勻,這表明所選取30名學(xué)生的聽(tīng)寫(xiě)成績(jī)?cè)诟鞣猪?xiàng)成績(jī)中相差最大,也說(shuō)明學(xué)生的聽(tīng)寫(xiě)技能相差最大,有一部分學(xué)生在聽(tīng)寫(xiě)技能方面還需加以強(qiáng)化訓(xùn)練,這就為今后的大學(xué)英語(yǔ)教學(xué)中調(diào)整教學(xué)策略提供了數(shù)據(jù)支持。而標(biāo)準(zhǔn)差越小,說(shuō)明離散程度越小,數(shù)據(jù)就越均勻,這表明所選取30名學(xué)生的寫(xiě)作成績(jī)?cè)诟鞣猪?xiàng)成績(jī)中相差最小,也說(shuō)明學(xué)生的寫(xiě)作水平相差不是非常顯著。
表2數(shù)據(jù)表明,在此次考試中,學(xué)生的聽(tīng)寫(xiě)和總成績(jī)之間雙尾檢驗(yàn)的概率值為0,小于0.01,閱讀與詞匯、聽(tīng)寫(xiě)與總成績(jī)和詞匯與聽(tīng)力之間的Pearson相關(guān)系數(shù)分別為0.87,0.743和0.449。
分析:學(xué)生的聽(tīng)寫(xiě)和總成績(jī)之間雙尾檢驗(yàn)的概率值為0,這說(shuō)明它們之間的相關(guān)程度是最顯著的,聽(tīng)寫(xiě)能力的高低顯著影響英語(yǔ)總成績(jī)。而閱讀與詞匯、聽(tīng)寫(xiě)與總成績(jī)和詞匯與聽(tīng)力之間的Pearson相關(guān)系數(shù)大,這說(shuō)明學(xué)生的詞匯能力對(duì)他們?cè)诼?tīng)力和閱讀部分的得分起到了顯著影響。
3.雙因素混合實(shí)驗(yàn)設(shè)計(jì)方差分析
雙因素混合實(shí)驗(yàn)設(shè)計(jì)方差分析就是包含兩個(gè)因素的重復(fù)測(cè)量設(shè)計(jì)。我們用該實(shí)驗(yàn)設(shè)計(jì)來(lái)檢驗(yàn)3位英語(yǔ)老師分別為所選取的30名學(xué)生所給出的作文評(píng)分是否存在顯著差異,作文評(píng)分與學(xué)生性別之間是否存在顯著差異。
步驟一:打開(kāi)Analyze-General Linear Model-Repeated Measures
步驟二:定義被試內(nèi)因素名及其水平數(shù)。我們要檢驗(yàn)老師所給作文評(píng)分與男女學(xué)生性別是否存在顯著差異,在Within-Subject Factor Name 中可鍵入“grading”。有3位老師參與了打分,因此在Number of Levels中輸入水平數(shù)3,然后點(diǎn)擊Add。
步驟三:定義被試內(nèi)變量。點(diǎn)擊Define,將變量teacher 1、teacher 2、teacher 3移入Within-Subjects中。同時(shí)將性別變量移入Between Subject Factors。
步驟四:選擇被試內(nèi)變量的對(duì)比方法。點(diǎn)擊contrast,在contrast的下拉菜單中,選擇repeated作為變量間的對(duì)比方法,再點(diǎn)擊change。
步驟五:點(diǎn)擊options,把幾個(gè)變量都移入display mean for中,表示對(duì)變量的平均值進(jìn)行比較。在confidence interval adjustment下拉菜單中選bonferroni,表示進(jìn)行事后檢驗(yàn)。選擇descriptive statistics,最后單擊OK。
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.
a.May be used to adjust the degrees of freedom for the averaged tests of significance.Corrected tests are displayed in the Tests of Within-Subjects Effects table.
b. Design: Intercept+gender
Within Subjects Design: grades
a. Adjustment for multiple comparisons: Bonferroni.
數(shù)據(jù)描述:由表3數(shù)據(jù)來(lái)看,3位老師所給作文平均分分別為11.5333,11.2667和11.7333,標(biāo)準(zhǔn)差分別為0.35782,1.61743和1.20153。再由表4 Mauchly球形檢驗(yàn)數(shù)據(jù)結(jié)果看,Mauchly檢驗(yàn)值為0.848,明顯大于0.05。而表6被試內(nèi)效應(yīng)檢驗(yàn)結(jié)果看,由于表4中的Mauchly檢驗(yàn)結(jié)果0.848大于0.05,我們就只看sphericity assumed的結(jié)果就可以了。由表5數(shù)據(jù)可見(jiàn),對(duì)評(píng)分變量進(jìn)行的sphericity assumed檢測(cè)結(jié)果為0.310,顯著水平明顯大于0.05。而對(duì)評(píng)分變量和性別因素變量進(jìn)行的sphericity assumed檢測(cè)結(jié)果為0.545,也明顯大于0.05。由表6數(shù)據(jù)可見(jiàn),教師1和教師2所給作文評(píng)分相對(duì)教師1和教師3所給作文評(píng)分檢驗(yàn)P值均為1.000,而教師2和教師3之間的評(píng)分檢驗(yàn)P值為0.432,而性別和作文得分的檢驗(yàn)P值為0.545。
本文為全文原貌 未安裝PDF瀏覽器用戶(hù)請(qǐng)先下載安裝 原版全文
分析:上述評(píng)分檢驗(yàn)P值數(shù)據(jù)說(shuō)明,3位老師對(duì)所選30位學(xué)生的作文評(píng)分差異不具有顯著性,同時(shí)還看到,教師在評(píng)分時(shí)受學(xué)生性別因素的影響也不具有顯著性。這說(shuō)明閱卷老師在作文評(píng)分中,對(duì)作文評(píng)分標(biāo)準(zhǔn)地把握還是比較科學(xué)、合理且比較一致的,比較客觀(guān)、公正地反映出了學(xué)生作文的真實(shí)成績(jī)。
4.多組配對(duì)檢驗(yàn)(Friedman Test)
我們還可以通過(guò)多組配對(duì)檢驗(yàn)(Friedman Test)來(lái)檢驗(yàn)3位英語(yǔ)老師分別為所選取的30名學(xué)生所給出的作文評(píng)分是否存在顯著差異。
步驟一:打開(kāi)Analyze - Nonparametric Test - K Related Samples(多列相關(guān)樣本);
步驟二:選擇檢驗(yàn)變量。將教師1、2、3對(duì)學(xué)生作文的評(píng)分分別移入Test Variables,并在檢驗(yàn)類(lèi)型中選Friedman。
步驟三:選定輸出統(tǒng)計(jì)量。點(diǎn)擊Statistics,選擇Descriptive。點(diǎn)擊OK。
由表9數(shù)據(jù)可得出,多組配對(duì)檢驗(yàn)顯著水平為0.177,大于一般可接受的0.05的顯著值,表明三個(gè)變量之間不存在顯著差異。也就是說(shuō),三位老師對(duì)30名學(xué)生作文的評(píng)分是比較一致的。
5.結(jié)語(yǔ)
大學(xué)英語(yǔ)A(1)考試是2010級(jí)A班學(xué)生在完成了大學(xué)英語(yǔ)第一學(xué)期的教學(xué)任務(wù)后進(jìn)行的終結(jié)性評(píng)估(summative test)(金艷,2005),但是數(shù)據(jù)分析表明此種形式的評(píng)估只能從一定程度上反映教學(xué)的結(jié)果,還不具備對(duì)整個(gè)教學(xué)過(guò)程或教學(xué)全貌進(jìn)行評(píng)估的能力。
其次,本次考試的效度、信度和可操作性之間也會(huì)存在問(wèn)題,尚需對(duì)試卷進(jìn)行全面的統(tǒng)計(jì)分析。另外,針對(duì)主觀(guān)題部分的批改,為保證批卷老師的閱卷信度(包括批卷老師的評(píng)分一致性、批卷老師之間的評(píng)分一致性),應(yīng)該采取系列措施,包括制定明確的評(píng)分標(biāo)準(zhǔn)、確定評(píng)分參照卷、嚴(yán)格的閱卷前培訓(xùn)、閱卷過(guò)程隨機(jī)抽查等(楊惠中、金艷,2001)。
總之,測(cè)試既是教育系統(tǒng)的有機(jī)組成部分,又是教育系統(tǒng)中不可缺少的環(huán)節(jié)。對(duì)測(cè)試結(jié)果的分析測(cè)量和評(píng)價(jià)應(yīng)當(dāng)是每一位語(yǔ)言教師必備的能力。本研究側(cè)重于如何使用SPSS13.0工具的二元變量相關(guān)分析與雙因素混合實(shí)驗(yàn)設(shè)計(jì)方差分析來(lái)分析本次大學(xué)英語(yǔ)測(cè)試成績(jī),從中發(fā)現(xiàn)學(xué)生在大學(xué)英語(yǔ)學(xué)習(xí)中哪些技能相差最大,這就為今后的大學(xué)英語(yǔ)教學(xué)中調(diào)整教學(xué)策略提供了數(shù)據(jù)支持,并能更加有效地增強(qiáng)大學(xué)英語(yǔ)教學(xué)效果。
參考文獻(xiàn):
[1]胡健穎,馮泰.實(shí)用統(tǒng)計(jì)學(xué)[M].北京:北京大學(xué)出版社,2002:236-237.
[2]皇甫偉.SPSS相關(guān)分析與線(xiàn)性回歸分析在英語(yǔ)考試成績(jī)分析中的應(yīng)用[J].中國(guó)電力教育,2007,(10):52-53.
[3]金艷.大學(xué)英語(yǔ)四、六級(jí)考試改革思路與未來(lái)展望-解讀《全國(guó)大學(xué)英語(yǔ)四、六級(jí)考試改革方案(試行)》[J].中國(guó)大學(xué)教學(xué),2005,(5):49-53.
[關(guān)鍵詞]項(xiàng)目風(fēng)險(xiǎn)管理;考試成績(jī);統(tǒng)計(jì)分析;問(wèn)卷調(diào)查;教學(xué)改進(jìn)方向
[中圖分類(lèi)號(hào)]G642.0 [文獻(xiàn)標(biāo)識(shí)碼]A [文章編號(hào)]1005-4634(2012)03-0094-03
0 引言
為了培養(yǎng)學(xué)生的風(fēng)險(xiǎn)意識(shí)和風(fēng)險(xiǎn)管理技能,河北工業(yè)大學(xué)從工程管理專(zhuān)業(yè)2005級(jí)開(kāi)始,在專(zhuān)業(yè)培養(yǎng)計(jì)劃的第六學(xué)期中設(shè)置了《項(xiàng)目風(fēng)險(xiǎn)管理》課程。本課程的任務(wù)是:通過(guò)大量的項(xiàng)目風(fēng)險(xiǎn)管理活動(dòng)實(shí)例,系統(tǒng)分析項(xiàng)目風(fēng)險(xiǎn)的客觀(guān)規(guī)律,研究項(xiàng)目風(fēng)險(xiǎn)管理的產(chǎn)生、發(fā)展及其基本概念體系,掌握項(xiàng)目風(fēng)險(xiǎn)管理規(guī)劃、風(fēng)險(xiǎn)識(shí)別、風(fēng)險(xiǎn)估計(jì)、風(fēng)險(xiǎn)評(píng)價(jià)、風(fēng)險(xiǎn)應(yīng)對(duì)、風(fēng)險(xiǎn)監(jiān)控等過(guò)程管理的基本框架、科學(xué)方法和實(shí)用技術(shù)、工具。
控制論創(chuàng)始人維納認(rèn)為:“一個(gè)有效的行為必須通過(guò)某種反饋過(guò)程來(lái)取得信息,從而了解目的是否已經(jīng)達(dá)到。”對(duì)課程成績(jī)分析的研究經(jīng)歷了從重要性認(rèn)識(shí)到成績(jī)的作用分析,再到成績(jī)分類(lèi)統(tǒng)計(jì)進(jìn)而分析原因并將信息反饋給教學(xué)的過(guò)程。早在1999年孫劍米就提出對(duì)試卷及學(xué)生考試成績(jī)進(jìn)行分析,可為教與學(xué)提供有針對(duì)性的反饋信息的觀(guān)點(diǎn)。成績(jī)分析既是教學(xué)評(píng)估的手段,又是教學(xué)研究的重要環(huán)節(jié)。建立對(duì)考試成績(jī)分析的反饋利用機(jī)制,有助于全面提高教育教學(xué)質(zhì)量。陳國(guó)敏教授針對(duì)2004級(jí)至2009級(jí)《系統(tǒng)解剖學(xué)》的考試成績(jī),統(tǒng)計(jì)分析了試卷的難度及區(qū)分度、男女生成績(jī)的差異性、年級(jí)成績(jī)之間的差異性。李素紅等在分析理工科學(xué)生《技術(shù)經(jīng)濟(jì)學(xué)》考試成績(jī)時(shí),對(duì)學(xué)生分別按學(xué)院和生源進(jìn)行了分類(lèi),然后根據(jù)考試知識(shí)點(diǎn)、重點(diǎn)和難度對(duì)不同學(xué)生的考試平均分、及格率以及各知識(shí)點(diǎn)的得分率進(jìn)行了研究。與以上兩個(gè)文獻(xiàn)研究側(cè)重于對(duì)試卷本身分析不同的是,王佳眉教授通過(guò)對(duì)比分析《大學(xué)物理》3個(gè)年級(jí)考試成績(jī)的平均分和峰值成績(jī)、成績(jī)達(dá)標(biāo)度及整體分布等成績(jī)分布情況,提出了對(duì)于學(xué)風(fēng)問(wèn)題、教師和學(xué)校投入等問(wèn)題的思考。本文在試卷分析和問(wèn)卷調(diào)查的基礎(chǔ)上,通過(guò)對(duì)學(xué)習(xí)興趣、學(xué)習(xí)態(tài)度和學(xué)習(xí)環(huán)境等因素的分析,研究改進(jìn)教學(xué)效果的途徑。
1 考試成績(jī)總體分析
本課程采用閉卷考試的方式對(duì)授課班級(jí)的學(xué)習(xí)情況進(jìn)行考察。出題的思路主要是突出知識(shí)應(yīng)用,重視學(xué)生的聽(tīng)課效果及對(duì)知識(shí)系統(tǒng)性的掌握。試卷主要包括四個(gè)題型:?jiǎn)雾?xiàng)選擇題(10分),多項(xiàng)選擇題(15分),簡(jiǎn)答題(50分)和綜合計(jì)算題(25分)。
本次考試主要的考核點(diǎn):項(xiàng)目風(fēng)險(xiǎn)的內(nèi)涵;項(xiàng)目風(fēng)險(xiǎn)與項(xiàng)目特性的關(guān)系;風(fēng)險(xiǎn)特征;項(xiàng)目后果標(biāo)度;風(fēng)險(xiǎn)效用;風(fēng)險(xiǎn)態(tài)度;憂(yōu)慮價(jià)值;利率風(fēng)險(xiǎn);風(fēng)險(xiǎn)管理規(guī)劃依據(jù);風(fēng)險(xiǎn)識(shí)別方法;風(fēng)險(xiǎn)登記冊(cè);決策樹(shù)分析方法;AHP;蒙特卡洛模擬方法;不確定風(fēng)險(xiǎn)決策的特點(diǎn)和方法;風(fēng)險(xiǎn)等級(jí)評(píng)價(jià);風(fēng)險(xiǎn)處理技術(shù);項(xiàng)目風(fēng)險(xiǎn)監(jiān)控的步驟。參加本課程考試的學(xué)生有本一和本三兩個(gè)類(lèi)別,本一和本三試卷題型相同,本三試卷總體難度低于本一試卷,兩種試卷試題不同。參加考試的學(xué)生情況見(jiàn)表1??荚嚦煽?jī)統(tǒng)計(jì)情況見(jiàn)表2。
就成績(jī)總體情況來(lái)看,平均分接近60分,單選題得分率高,多選題和簡(jiǎn)答題得分率低,本一學(xué)生成績(jī)標(biāo)準(zhǔn)差為12.61,本三學(xué)生成績(jī)標(biāo)準(zhǔn)差為13.08,不及格率高,命題偏難。從試卷本身和考試情況來(lái)看,存在兩個(gè)主要問(wèn)題:一是考試成績(jī)與試卷難度不符,組卷初衷是難度適中,統(tǒng)計(jì)結(jié)果顯示難度偏高。二是從題型來(lái)看,單選題考查的都是基本知識(shí)點(diǎn),得分較高;多選題、簡(jiǎn)答題得分低,總體顯示側(cè)重知識(shí)應(yīng)用的題得分不高。估計(jì)原因可能有:(1)考前沒(méi)劃重點(diǎn),學(xué)生對(duì)考核點(diǎn)的理解有偏差;(2)整套試題側(cè)重知識(shí)的應(yīng)用,偏重課堂聽(tīng)課的效果,學(xué)生并沒(méi)有完全理解和掌握相關(guān)知識(shí)點(diǎn),知識(shí)運(yùn)用能力需要加強(qiáng)。
2 考試成績(jī)對(duì)比分析
2.1 學(xué)生類(lèi)別與考試成績(jī)
本次考試的成績(jī)統(tǒng)計(jì)結(jié)果顯示:本一學(xué)生平均得分和及格率都高于本三學(xué)生,各題得分率基本高于本三學(xué)生,只有綜合計(jì)算題例外,原因在于本三試卷的綜合計(jì)算題與課堂例題類(lèi)似,本一試卷的綜合計(jì)算題加大了難度。考試成績(jī)總體情況說(shuō)明本一學(xué)生的學(xué)習(xí)能力優(yōu)于本三學(xué)生。
2.2 性別與考試成績(jī)
經(jīng)計(jì)算,本一男女生成績(jī)平均分分別為58.71、60.31;本三男女生的成績(jī)平均分分別為55.85、61.91。本一男女生的不及格率分別為42.11%和30.76%。本三男女生的不及格率分別為67.50%和38.10%。無(wú)論哪種類(lèi)別學(xué)生,女生的平均分均高于男生,不及格率均低于男生。一般而言,大學(xué)女生學(xué)習(xí)態(tài)度比較認(rèn)真,在課程學(xué)習(xí)上投入的時(shí)間高于男生,課堂聽(tīng)課情況好于男生。
2.3 出勤情況與考試成績(jī)
學(xué)生出勤情況包括三種:缺勤、遲到和正常。統(tǒng)計(jì)結(jié)果顯示:較多缺勤和遲到(2次或以上)學(xué)生的最高分為67。當(dāng)然點(diǎn)名次數(shù)比較少,有些學(xué)生有可能因?yàn)楹苤匾氖氯闭n卻恰好被查出,但統(tǒng)計(jì)結(jié)果基本上可以反映真實(shí)情況。本一學(xué)生中有缺勤記錄的學(xué)生平均分為53.88,無(wú)缺勤記錄的學(xué)生平均分為60.24;本三學(xué)生中有缺勤記錄的學(xué)生平均分為53.09,無(wú)缺勤記錄的學(xué)生平均分為59.86;本一和本三有缺勤記錄的學(xué)生成績(jī)均低于總體平均分,缺勤學(xué)生的不及格率分別為55.56%、81.82%。這可能有兩個(gè)原因:(1)學(xué)習(xí)成績(jī)與學(xué)習(xí)態(tài)度有關(guān);(2)考試成績(jī)與聽(tīng)課效果有關(guān)。
2.4 宿舍環(huán)境與考試成績(jī)
同一宿舍的學(xué)生,一般有著相近的生活習(xí)慣和作息時(shí)間,彼此對(duì)學(xué)習(xí)的態(tài)度也會(huì)互相影響。河北工業(yè)大學(xué)因?yàn)榘创箢?lèi)專(zhuān)業(yè)招生,二年級(jí)下學(xué)期再分專(zhuān)業(yè),而分班后宿舍不變,因此參加考試的學(xué)生住的比較分散。但統(tǒng)計(jì)結(jié)果也表明,有的宿舍不及格率達(dá)到80%,同時(shí)也有宿舍平均分在70分以上,分?jǐn)?shù)最低的學(xué)生也考了60分,因此宿舍學(xué)風(fēng)太差會(huì)影響所有的宿舍成員,而一個(gè)積極的學(xué)習(xí)氛圍也同樣影響所有宿舍成員。
2.5 上課座位與考試成績(jī)
經(jīng)過(guò)成績(jī)統(tǒng)計(jì),發(fā)現(xiàn)河北工業(yè)大學(xué)經(jīng)常坐前排學(xué)生的平均分高于經(jīng)常坐后排學(xué)生的平均分。以本三為例,前者平均分為60.15,遠(yuǎn)遠(yuǎn)超過(guò)后者的平均分50.55??梢?jiàn)上課時(shí)所坐的位置對(duì)聽(tīng)課的效果有較大的影響。一般來(lái)講,前排距離老師比較近,視聽(tīng)都很清楚。另外,距離老師比較近注意力會(huì)相對(duì)更集中。相反,坐在后排很容易走神,行動(dòng)比較自由,很容易說(shuō)話(huà)或玩手機(jī)等。
3 考試成績(jī)影響因素分析
為了更好的研究教學(xué)情況,設(shè)計(jì)了針對(duì)課堂教學(xué)和期末考試的調(diào)查問(wèn)卷。共設(shè)計(jì)了16個(gè)問(wèn)題,包括了出勤、課堂表現(xiàn)、作業(yè)、對(duì)考試的看法以及學(xué)習(xí)態(tài)度等方面。共發(fā)放問(wèn)卷133份,分發(fā)給所有學(xué)習(xí)該課程并參與考試的學(xué)生,收回有效問(wèn)卷132份。對(duì)回收問(wèn)卷統(tǒng)計(jì)后,結(jié)合考試成績(jī)的統(tǒng)計(jì)分析和平時(shí)與學(xué)生的交流情況,認(rèn)為影響考試成績(jī)的因素如下。
3.1 考核知識(shí)點(diǎn)是否明確
調(diào)查結(jié)果顯示,60.61%的學(xué)生認(rèn)為考題難,僅有一個(gè)學(xué)生認(rèn)為考題簡(jiǎn)單。多數(shù)認(rèn)為考前未劃重點(diǎn)對(duì)自己影響大,61.36%認(rèn)為復(fù)習(xí)的沒(méi)有考,20.45%的學(xué)生感覺(jué)不適應(yīng)題型,還有一部分學(xué)生認(rèn)為好多題會(huì)做,但答錯(cuò)了。83.33%都認(rèn)為考前劃重點(diǎn)比較好,有53.79%的學(xué)生認(rèn)為劃重點(diǎn)可以促進(jìn)學(xué)習(xí),支持劃重點(diǎn)的學(xué)生里有相當(dāng)一部分認(rèn)為劃重點(diǎn)僅為了方便考試,而不是為了真正學(xué)到知識(shí)。
3.2 學(xué)生的學(xué)習(xí)重點(diǎn)
由考試結(jié)果來(lái)看,學(xué)生對(duì)考查基本概念的題得分率都比較高,而對(duì)于知識(shí)的擴(kuò)展與運(yùn)用方面的題型得分相對(duì)較差。顯示學(xué)生在學(xué)習(xí)中更多的是機(jī)械地記憶,欠缺理解或者思考各個(gè)知識(shí)點(diǎn)之間的聯(lián)系。也許很大程度上只是想單純的應(yīng)付考試,沒(méi)有想過(guò)要扎實(shí)地掌握重點(diǎn)知識(shí)和基本方法。
3.3 學(xué)生的學(xué)習(xí)態(tài)度
成績(jī)統(tǒng)計(jì)結(jié)果顯示學(xué)習(xí)態(tài)度在很大程度上影響考試成績(jī)。調(diào)查結(jié)果顯示有14.39%的學(xué)生上課喜歡坐后排,但是認(rèn)為坐后排更有利于學(xué)習(xí)的只有4.55%。51.02%的學(xué)生坐在后排的理由僅僅是因?yàn)樾睦锸娣蚴强梢宰杂芍鋾r(shí)間。竟有44.70%的學(xué)生認(rèn)為上課時(shí)自由出入教室、隨意接電話(huà)等行為是可以接受的。另外,只有45.45%的學(xué)生上課會(huì)做筆記,48.48%的學(xué)生只是在老師強(qiáng)調(diào)會(huì)考的情況下才會(huì)記下來(lái),還有一小部分人上課什么都不帶,也根本不做筆記。
3.4 學(xué)生的學(xué)習(xí)興趣
學(xué)生對(duì)多數(shù)課程知識(shí)不感興趣,因此對(duì)課程的重視程度和學(xué)習(xí)的主動(dòng)性直接影響學(xué)習(xí)效果。14.39%的學(xué)生很不支持老師要求出勤,15.91%的學(xué)生會(huì)缺勤或遲到。理由多種多樣:很多學(xué)生認(rèn)為理論知識(shí)實(shí)際中用不著:有學(xué)生認(rèn)為只有土木技術(shù)類(lèi)課程才是重要課程;還有部分同學(xué)只有在教師講實(shí)際項(xiàng)目經(jīng)歷時(shí)才能聚精會(huì)神。非常有趣的是,這些學(xué)生也認(rèn)為項(xiàng)目風(fēng)險(xiǎn)管理對(duì)于從事項(xiàng)目管理工作非常重要。
4 結(jié)論
通過(guò)對(duì)考試成績(jī)和問(wèn)卷調(diào)查結(jié)果的統(tǒng)計(jì)分析,發(fā)現(xiàn)以下問(wèn)題:教師和學(xué)生對(duì)課程知識(shí)的認(rèn)知存在較大差別,學(xué)生的學(xué)習(xí)情況與教師的期望存在較大差距,教師的授課與學(xué)生的期望存在較大差異。這些問(wèn)題導(dǎo)致教師的“教”與學(xué)生的“學(xué)”未能有機(jī)結(jié)合。針對(duì)以上問(wèn)題,課程改進(jìn)的思路是:(1)明確課程定位,加強(qiáng)課程重要性的認(rèn)知。工程管理專(zhuān)業(yè)的課程體系由管理學(xué)、經(jīng)濟(jì)學(xué)、法學(xué)和土木工程學(xué)四類(lèi)課程構(gòu)成,這是專(zhuān)業(yè)特色,許多課程知識(shí)對(duì)于就業(yè)也許不能產(chǎn)生“立竿見(jiàn)影”的效果,但對(duì)于學(xué)生綜合能力的提升具有長(zhǎng)期的影響。非土木工程類(lèi)課程的重要性,教師必須說(shuō)得明白,講的透徹,只有學(xué)生感知到了,才能產(chǎn)生興趣。(2)端正學(xué)生的學(xué)習(xí)態(tài)度,加強(qiáng)自學(xué)能力培養(yǎng)。教師端正“教”的態(tài)度是學(xué)生端正“學(xué)”的態(tài)度的前提,對(duì)自己和學(xué)生嚴(yán)格要求,本著教有所成的原則,采用靈活多變的教學(xué)方式,增加課下閱讀推薦量,并明確考前不劃重點(diǎn)的閉卷考試方式,引導(dǎo)學(xué)生自學(xué)的同時(shí)促使學(xué)生深入認(rèn)識(shí)本課程。及時(shí)批改課下作業(yè),通過(guò)充分討論,提高學(xué)生對(duì)知識(shí)的運(yùn)用能力。鼓勵(lì)學(xué)生大膽質(zhì)疑,在師生的相互學(xué)習(xí)與探討中,把新舊知識(shí)融會(huì)貫通。(3)突出知識(shí)點(diǎn)和考核重點(diǎn),明確學(xué)生的學(xué)習(xí)目標(biāo)。在列出每章學(xué)習(xí)目標(biāo)的基礎(chǔ)上,在課程開(kāi)始時(shí)向?qū)W生發(fā)放教學(xué)計(jì)劃和課程考試大綱,加強(qiáng)師生互動(dòng)溝通,結(jié)合課程知識(shí)體系,調(diào)整和優(yōu)化授課內(nèi)容,將知識(shí)模塊化。(4)逐步實(shí)現(xiàn)完全的案例式教學(xué)模式。這就要求任課教師認(rèn)真設(shè)計(jì)教學(xué)過(guò)程,從問(wèn)題提出的方式、解決的過(guò)程到結(jié)論的形成與討論深化,將知識(shí)融入到其中,增強(qiáng)課程的趣味性,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)過(guò)程中,老師要注重發(fā)揮學(xué)生的主體地位,布置開(kāi)放性問(wèn)題,發(fā)掘?qū)W生學(xué)習(xí)的主動(dòng)性,鼓勵(lì)他們思考和自我求解。
參考文獻(xiàn)
[1]孫劍米.談考試成績(jī)分析[J].統(tǒng)計(jì)教育,1999,(6):29-30.
[2]劉戰(zhàn)芳.高校應(yīng)重視學(xué)生考試成績(jī)的分析與反饋[J].安徽警官職業(yè)學(xué)院學(xué)報(bào),2007,(5):79-80.
[3]陳國(guó)敏,肖新莉,李月英.留學(xué)生系統(tǒng)解剖學(xué)考試成績(jī)綜合分析[J].山西醫(yī)科大學(xué)學(xué)報(bào)(基礎(chǔ)醫(yī)學(xué)教育版),2010,12(9):939-942.
[關(guān)鍵詞]SPSS;期末考試成績(jī);統(tǒng)計(jì)分析
1 引言
統(tǒng)計(jì)分析軟件――SPSS(Statistical Package for the Social sci,ence)的中文譯名為社會(huì)科學(xué)統(tǒng)計(jì)軟件包,它是世界著名的、優(yōu)秀的統(tǒng)計(jì)分析軟件之一。SPSS是一個(gè)具有綜合性的專(zhuān)業(yè)統(tǒng)計(jì)分析和數(shù)據(jù)管理系統(tǒng)。SPSS數(shù)據(jù)管理和分析功能強(qiáng)大,界面友好,操作簡(jiǎn)單,有靈活的變量變換和文件交換系統(tǒng),多種統(tǒng)計(jì)圖表的結(jié)果輸出,并具有與Microsoft Office軟件兼容等特點(diǎn),在社會(huì)學(xué)、醫(yī)學(xué)、心理學(xué)、人文學(xué)、生物學(xué)、教育學(xué)等領(lǐng)域已取得了深入的應(yīng)用。它操作簡(jiǎn)便、好學(xué)易懂、簡(jiǎn)單實(shí)用,是學(xué)術(shù)界經(jīng)常使用的計(jì)量軟件。SPSS的主要功能為:回歸及相關(guān)分析、聚類(lèi)與判別分析、主成分分析及因子分析等十幾個(gè)大類(lèi)。下文將以某班學(xué)生的期末考試成績(jī)?yōu)闃颖荆?jiǎn)單分析了一下SPSS在學(xué)術(shù)研究中的具體應(yīng)用案例。
2 數(shù)據(jù)來(lái)源和數(shù)據(jù)錄入
筆者通過(guò)運(yùn)用統(tǒng)計(jì)分析軟件SPSS,對(duì)某班30名同學(xué)的一次期末考試成績(jī)進(jìn)行了統(tǒng)計(jì)分析,各項(xiàng)成績(jī)包括大學(xué)體育、程序設(shè)計(jì)語(yǔ)言、成績(jī)?cè)O(shè)計(jì)語(yǔ)言SJ、思想和中國(guó)特色社會(huì)主義理論體系概論、大學(xué)英語(yǔ)、檔案學(xué)概論、信息系統(tǒng)管理和總分8項(xiàng),統(tǒng)計(jì)數(shù)據(jù)如表1所示。將存在于excel中的表1,通過(guò)“文件”“打開(kāi)”“數(shù)據(jù)”“文件類(lèi)型”選擇excel一選中表某班同學(xué)期末考試成績(jī)所在的excel文件一點(diǎn)擊“打開(kāi)”,便可將excel中的數(shù)據(jù)導(dǎo)入SPSS。
3 數(shù)據(jù)分析
3.1 描述性分析
3.1.1 頻數(shù)
在數(shù)據(jù)視圖中進(jìn)行以下操作:點(diǎn)擊菜單欄中的“分析”“描述統(tǒng)計(jì)”“頻率”將7門(mén)課程及總分項(xiàng)添加到變量中,選中“圖表”中的“直方圖”并勾選“帶正態(tài)曲線(xiàn)”后點(diǎn)擊“繼續(xù)”,勾選“顯示頻率表格”項(xiàng),點(diǎn)擊“確定”共出現(xiàn)8個(gè)直方圖,圖1是其中一個(gè)。由圖1可分析,大學(xué)體育成績(jī)的均值為89.03分,取得89-91分的同學(xué)占8人,得分在80分以下的2位同學(xué)需加強(qiáng)此方面的鍛煉。大學(xué)體育成績(jī)呈正態(tài)分布,標(biāo)準(zhǔn)差為5.411,反映出此體育教師的評(píng)分較合理。
3.1.2 平均數(shù)與標(biāo)準(zhǔn)差
在數(shù)據(jù)視圖中進(jìn)行以下操作:點(diǎn)擊菜單欄中的“分析”“描述統(tǒng)計(jì)”“描述”在“描述性”對(duì)話(huà)框中添加7門(mén)課程和總分項(xiàng)到“變量”,勾選“將標(biāo)準(zhǔn)化得分另存為變量”,點(diǎn)擊選項(xiàng)中的“均值”、“標(biāo)準(zhǔn)差”、“最大值”、“最小值”后點(diǎn)擊“繼續(xù)”,單擊“確定”所得結(jié)果如表2:
由表1可知,大學(xué)英語(yǔ)中的極小值為55分,存在掛課現(xiàn)象,該同學(xué)必須重修,來(lái)年選課時(shí)應(yīng)及時(shí)通知該同學(xué)重修。程序設(shè)計(jì)語(yǔ)言和大學(xué)英語(yǔ)的均值達(dá)不到70分,英語(yǔ)和計(jì)算機(jī)是當(dāng)代大學(xué)生必備的兩個(gè)技能,我班需實(shí)施一些措施來(lái)提高同學(xué)們的英語(yǔ)和計(jì)算機(jī)水平。程序設(shè)計(jì)語(yǔ)言的標(biāo)準(zhǔn)差高達(dá)10.189分,極大值94分,同學(xué)們可以向計(jì)算機(jī)水平高的2009409035等同學(xué)請(qǐng)教。
3.1.3 分組求平均值
分組求平均值是對(duì)數(shù)據(jù)分組描述,可以輸出分組數(shù)據(jù)的均值、標(biāo)準(zhǔn)差、極值等,即對(duì)數(shù)據(jù)進(jìn)行多層分類(lèi)匯總。點(diǎn)擊菜單欄中的“分析”“比較均值”“均值”在“均值”對(duì)話(huà)框中,將“總分”添加到“因變量列表”、“大學(xué)體育”添加到“自變量列表”,點(diǎn)擊確定。結(jié)果為表2:
隨著體育成績(jī)的逐步提高,總成績(jī)均值出現(xiàn)了高低起伏不定的趨勢(shì),這說(shuō)明體育成績(jī)和總分之間沒(méi)有必然的聯(lián)系。加強(qiáng)體質(zhì)鍛煉不會(huì)影響自己的學(xué)習(xí)成績(jī),因此多運(yùn)動(dòng)不應(yīng)成為成績(jī)不佳的借口。作為當(dāng)今社會(huì)的一名大學(xué)生,只是學(xué)習(xí)好是不行的。學(xué)習(xí)固然重要,但大學(xué)作為與社會(huì)接觸的橋梁,素質(zhì)拓展活動(dòng)也不可缺少。同學(xué)們應(yīng)努力提升自己的綜合素質(zhì),力圖使自己成為一名四有新人,德智體美各方面全部發(fā)展。
3.1.4 數(shù)據(jù)探測(cè)
點(diǎn)擊菜單欄中的“分析”“描述統(tǒng)計(jì)”“探索”在彈出的“探索”對(duì)話(huà)框中,將“總分”添加到“因變量列表”、“檔案學(xué)概論”和“信息系統(tǒng)管理”添加到“因子列表”,選擇“繪制”中的“莖葉圖”后單擊“繼續(xù)”,選擇“輸出”中的“圖”,最后點(diǎn)擊“確定”生成如圖2所示的兩張箱線(xiàn)圖:
圖2中的兩幅圖呈現(xiàn)出同一個(gè)趨勢(shì),即數(shù)據(jù)點(diǎn)分布在左下角和右上角的對(duì)角線(xiàn)附近。也就是說(shuō),無(wú)論是檔案學(xué)概論的成績(jī)還是信息系統(tǒng)管理的成績(jī),都與總分是正相關(guān)的關(guān)系。換句話(huà)講,一般情況下,專(zhuān)業(yè)課成績(jī)高的同學(xué),總分也就越高。由此可見(jiàn)專(zhuān)業(yè)課的重要性,在日常的學(xué)習(xí)中,同學(xué)們應(yīng)把專(zhuān)業(yè)課放在首要位置。
3.2 聚類(lèi)分析
聚類(lèi)分析是根據(jù)一批樣本的多個(gè)觀(guān)測(cè)指標(biāo),具體找出一些能夠度量樣品或指標(biāo)之間相似程度的統(tǒng)計(jì)量,以這些統(tǒng)計(jì)量為劃分類(lèi)型的依據(jù),把一些相似程度較大的樣品(或指標(biāo))聚合為一類(lèi)。類(lèi)聚分析是研究“物以類(lèi)聚”的一種方法。
現(xiàn)將全班30人按總分分為三類(lèi),以直觀(guān)、簡(jiǎn)明的方式統(tǒng)計(jì)每個(gè)同學(xué)在學(xué)習(xí)成績(jī)上所處的位置,具體操作步驟如下:點(diǎn)擊菜單欄中的“分析”“分類(lèi)”“系統(tǒng)聚類(lèi)”一在彈出的對(duì)話(huà)框中,將“總分”添加到“變量”、“學(xué)號(hào)”添加到“標(biāo)注個(gè)案”,分群為“個(gè)案”,輸出勾選“圖”,在“繪制”中勾選“樹(shù)狀圖”,然后繼續(xù)一單擊“確定,最后生成樹(shù)狀圖。
3.3 多維尺度分析
多維尺度分析技術(shù)是一種探索性數(shù)據(jù)分析技術(shù),可以將含有多個(gè)變量的大型數(shù)據(jù)壓縮到一個(gè)低維空間,形成一個(gè)直觀(guān)的空間圖形,以空間中的點(diǎn)表示變量之間的潛在規(guī)律性聯(lián)系。
通過(guò)SPSS統(tǒng)計(jì)軟件“度量”功能中的“多維尺度”分析功能。可以分析七門(mén)課程之間的潛在規(guī)律性聯(lián)系,具體操作步驟如下:“分析”“度量”“多維尺度”在“多維尺度”對(duì)話(huà)框中,將七門(mén)課程添加到“變量”,數(shù)據(jù)為距離數(shù)據(jù)選擇“正對(duì)稱(chēng)”,“模型”中度量水平為“序數(shù)”、條件性為“矩陣”、維數(shù)均為“2”,選項(xiàng)中的輸出選擇“組圖”點(diǎn)擊“確定”,生成圖3。通過(guò)圖3可以看出七門(mén)課程之間的潛在性規(guī)律,如程序設(shè)計(jì)語(yǔ)言和大學(xué)英語(yǔ)被劃分在第二象限,其中的潛在性規(guī)律可能有很多,比如均分都比較低等。通過(guò)此圖也可以驗(yàn)證上文的一些結(jié)論。
3.4 相關(guān)分析
相關(guān)分析是研究一個(gè)變量與另一個(gè)變量間的相互關(guān)系。研究變量間相互關(guān)系的性質(zhì)和緊密程度。換句話(huà)講,相關(guān)分析的任務(wù)是對(duì)相關(guān)關(guān)系給予定量的描述。
4 結(jié)語(yǔ)
成績(jī)分析是教育系統(tǒng)的有機(jī)組成部分,對(duì)考試成績(jī)的分析測(cè)量和評(píng)價(jià)應(yīng)當(dāng)是每個(gè)教師和同學(xué)必備的能力。SPSS在考試數(shù)據(jù)統(tǒng)計(jì)分析中應(yīng)用廣泛,本文結(jié)合具體數(shù)據(jù),從描述性分析、聚類(lèi)分析、多維尺度分析和相關(guān)分析四個(gè)方面介紹了使用SPSS進(jìn)行統(tǒng)計(jì)分析的一般方法和步驟,并提出一些實(shí)際存在的問(wèn)題和建議。通過(guò)分析該班同學(xué)的期末考試成績(jī),筆者更加深入地了解了同學(xué)們的學(xué)習(xí)現(xiàn)狀,相信此次統(tǒng)計(jì)分析結(jié)果會(huì)為該班提供很好的借鑒,同時(shí)也希望能為年輕的科研人員提供一種研究思路。
參考文獻(xiàn)
[1]楊曉秋,圖書(shū)館讀者滿(mǎn)意度調(diào)查問(wèn)卷的SPSS設(shè)計(jì)[J],農(nóng)業(yè)圖書(shū)情報(bào)學(xué)刊,2 008(20):171-174
[2]楊曉明,SPSS在教育統(tǒng)計(jì)中的應(yīng)用[M],北京:高等教育出版社,2004
[3]趙守盈,呂紅云,多維尺度分析技術(shù)的特點(diǎn)及幾個(gè)基礎(chǔ)問(wèn)題[J],評(píng)價(jià)與測(cè)量,2010(4):13-19
[4]曹玲,楊靜,夏嚴(yán),國(guó)內(nèi)競(jìng)爭(zhēng)情報(bào)領(lǐng)域研究論文的共詞聚類(lèi)分析[J],情報(bào)科學(xué),2011(28):923-930
[5]李延波,房紅芳,SPSS統(tǒng)計(jì)軟件在大學(xué)英語(yǔ)考試成績(jī)分析中的應(yīng)用[J],考試研究,2011(20):1-3
[6]崔永紅,李學(xué)民,運(yùn)用SPSS對(duì)專(zhuān)業(yè)基礎(chǔ)課與專(zhuān)業(yè)課成績(jī)分析[J],科教研究,2011(14):34-36
[7]潘小燕,統(tǒng)計(jì)分析軟件在大學(xué)英語(yǔ)教學(xué)測(cè)試效果評(píng)估中的英語(yǔ)[J],科教文匯,2011(3):112-113
關(guān)鍵詞:核Fisher判別分析;高職教育;考試成績(jī)預(yù)測(cè)
中圖分類(lèi)號(hào): TP391 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-8454(2016)16-0076-04
一、引言
隨著國(guó)家“十三五”規(guī)劃的順利進(jìn)行,加快發(fā)展職業(yè)教育已經(jīng)越來(lái)越成為國(guó)家、社會(huì)和教育界的共識(shí),高職院校不可避免的成為了培養(yǎng)實(shí)用技能型人才的主要基地。隨著高職招生人數(shù)的不斷擴(kuò)大,以及社會(huì)還沒(méi)有擺脫對(duì)職業(yè)教育的傳統(tǒng)觀(guān)念,高職院校的生源質(zhì)量每況愈下。一部分學(xué)生的基礎(chǔ)知識(shí)較差,學(xué)習(xí)新知識(shí)的意愿不強(qiáng),無(wú)論在課堂上與老師的互動(dòng),還是課下的平時(shí)作業(yè)完成情況,都不盡如人意,使得教師很難在真正考試之前評(píng)估教學(xué)效果,從而造成教學(xué)質(zhì)量下降。因此,如何提高高職學(xué)生的學(xué)習(xí)成績(jī),成為社會(huì)和學(xué)校都關(guān)注的問(wèn)題。在教學(xué)過(guò)程中、期末考試之前,有針對(duì)性的建立模型預(yù)測(cè)考試成績(jī),提前評(píng)估教學(xué)效果,可以起到預(yù)警的作用。對(duì)那些有可能不及格的學(xué)生及時(shí)糾正其不良學(xué)習(xí)行為,并進(jìn)行單獨(dú)輔導(dǎo),則有助于提高學(xué)生成績(jī),減少不合格現(xiàn)象,進(jìn)而提高學(xué)生培養(yǎng)質(zhì)量,優(yōu)化課程設(shè)計(jì),促進(jìn)教師教學(xué)進(jìn)步。
正是意識(shí)到學(xué)生成績(jī)預(yù)測(cè)對(duì)提高教學(xué)質(zhì)量、促進(jìn)教學(xué)改革的重要性,國(guó)內(nèi)一些學(xué)者在幾年前就已經(jīng)開(kāi)始對(duì)該領(lǐng)域展開(kāi)研究。大部分學(xué)者將成績(jī)預(yù)測(cè)視為分類(lèi)問(wèn)題,于是多采用數(shù)據(jù)挖掘或機(jī)器學(xué)習(xí)領(lǐng)域的算法,如決策樹(shù)、人工神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等來(lái)建立模型。其中,決策樹(shù)方法因?yàn)槔碚摪l(fā)展成熟、易于理解等優(yōu)點(diǎn),被廣泛用于大學(xué)生英語(yǔ)成績(jī)預(yù)測(cè)[1]、大學(xué)生計(jì)算機(jī)等級(jí)考試成績(jī)預(yù)測(cè)[2]、一般性課程的成績(jī)預(yù)測(cè)[3, 4]等;而人工神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)也因?yàn)樵鷮?shí)的理論基礎(chǔ)和廣泛應(yīng)用,被用于大學(xué)生課程成績(jī)預(yù)測(cè)[5,6],并取得良好的效果。
核Fisher判別分析作為基于核函數(shù)的機(jī)器學(xué)習(xí)算法的典型代表[7],其分類(lèi)效果在其他模式識(shí)別和預(yù)測(cè)領(lǐng)域得到了很好的驗(yàn)證[8,9]。學(xué)者們前期的研究成果表明,決策樹(shù)、神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)方法在學(xué)生考試成績(jī)預(yù)測(cè)方面均取得了不俗的成績(jī)。但是到目前為止,我們尚未發(fā)現(xiàn)有學(xué)者應(yīng)用完整的核Fisher判別分析進(jìn)行大學(xué)生成績(jī)預(yù)測(cè)的系統(tǒng)報(bào)道(雖然有學(xué)者利用線(xiàn)性Fisher判別分析對(duì)SVM模型中的數(shù)據(jù)因素進(jìn)行加權(quán)[6])。因此,本文提出利用核Fisher判別分析作為工具,嘗試尋找學(xué)生學(xué)習(xí)屬性與成績(jī)之間隱含的非線(xiàn)性復(fù)雜關(guān)系,從而建立高職在校學(xué)生期末考試成績(jī)預(yù)測(cè)模型。實(shí)驗(yàn)分析中以深圳信息職業(yè)技術(shù)學(xué)院物流管理專(zhuān)業(yè)2015級(jí)3個(gè)班級(jí)的學(xué)生作為研究對(duì)象,采用學(xué)生性別、生源地、考勤表現(xiàn)和平時(shí)作業(yè)成績(jī)等作為模型的輸入變量,來(lái)預(yù)測(cè)學(xué)生的期末考試成績(jī)。實(shí)驗(yàn)結(jié)果證明,核Fisher判別分析的泛化能力強(qiáng),其預(yù)測(cè)精度與支持向量機(jī)十分接近,并且優(yōu)于C4.5決策樹(shù)方法。
二、核Fisher判別分析
核Fisher判別分析[7]是基于核函數(shù)的機(jī)器學(xué)習(xí)算法中的一種,其結(jié)合了線(xiàn)性Fisher判別分析與核函數(shù)的思想,能夠有效地解決現(xiàn)實(shí)中的分類(lèi)問(wèn)題[8, 9] 。
1.線(xiàn)性Fisher判別分析原理[10]
線(xiàn)性Fisher判別分析是一種有監(jiān)督學(xué)習(xí)的分類(lèi)方法。給定一組d維空間的樣本數(shù)據(jù)x∈R(i∈1,2,.....n),n為樣本數(shù)據(jù)集的大小,他們分別屬于不同的兩類(lèi),則樣本類(lèi)別標(biāo)識(shí)記為yi∈{1,2}。屬于類(lèi)1的n1個(gè)樣本記為X1={x11,x12,......x1},屬于類(lèi)2的n2個(gè)樣本記為X2={x21,x22,......x2}。算法“學(xué)習(xí)”或者“訓(xùn)練”的過(guò)程,就是要找到樣本數(shù)據(jù)與其類(lèi)別隱含的內(nèi)在關(guān)系模式xy。線(xiàn)性Fisher判別分析構(gòu)造學(xué)習(xí)模型的核心目標(biāo)是尋找一個(gè)d維向量w∈R,當(dāng)樣本數(shù)據(jù)向該方向投影時(shí),最大化類(lèi)間散度和類(lèi)內(nèi)散度的比值,使得樣本數(shù)據(jù)在這個(gè)方向上盡可能的分開(kāi),達(dá)到清楚辨識(shí)的目的。定義某一類(lèi)樣本(i=1,2)數(shù)據(jù)類(lèi)內(nèi)均值為:
2.核Fisher判別分析原理
線(xiàn)性Fisher判別分析是一種線(xiàn)性分類(lèi)器,當(dāng)樣本數(shù)據(jù)與類(lèi)別呈現(xiàn)線(xiàn)性關(guān)系時(shí)其分類(lèi)效果會(huì)很好。但是實(shí)際問(wèn)題中,樣本數(shù)據(jù)與其類(lèi)別的關(guān)系往往呈現(xiàn)出復(fù)雜的非線(xiàn)性,則線(xiàn)性Fisher判別分析的分類(lèi)效果就會(huì)差強(qiáng)人意,而且也無(wú)法解決模式識(shí)別中常見(jiàn)的維數(shù)災(zāi)難問(wèn)題。在支持向量機(jī)中成功應(yīng)用的核函數(shù)的出現(xiàn)解決了這個(gè)問(wèn)題[11, 12]。核函數(shù)首先將數(shù)據(jù)從低維的輸入向量空間R映射到高維(甚至是無(wú)限維)的特征空間,即φ:R。通過(guò)某些核φ(?),映射可表示為xiφ(xi)=(a1φ1(xi),……,amφm(xi),……)。在這個(gè)高維的特征空間中應(yīng)用線(xiàn)性Fisher判別分析,在特征空間得到的線(xiàn)性分類(lèi)器通過(guò)核映射回原始的輸入數(shù)據(jù)空間R時(shí),就得到了非線(xiàn)性分類(lèi)器。
基于線(xiàn)性Fisher判別分析的原理,核Fisher判別分析在特征空間要尋找w∈,使得下式F(w)最大化:
三、實(shí)驗(yàn)及分析
為了評(píng)估本文提出的基于核Fisher判別分析的預(yù)測(cè)模型的實(shí)際效果,我們將深圳信息職業(yè)技術(shù)學(xué)院物流管理專(zhuān)業(yè)2015級(jí)3個(gè)班級(jí)共151名學(xué)生作為研究對(duì)象,收集第一學(xué)年某門(mén)專(zhuān)業(yè)基礎(chǔ)課的期末考試成績(jī)及相關(guān)因素作為模型的輸出和輸入變量。預(yù)測(cè)模型的輸入變量(樣本屬性)應(yīng)該與考試成績(jī)密切相關(guān),我們選擇輸入向量時(shí)主要根據(jù)日常教學(xué)經(jīng)驗(yàn)反饋的以下幾點(diǎn)事實(shí):①大學(xué)生個(gè)體的期末成績(jī)往往與其曠課、遲到次數(shù)(出勤反映學(xué)習(xí)態(tài)度)負(fù)相關(guān),與平時(shí)作業(yè)成績(jī)(平時(shí)作業(yè)代表學(xué)習(xí)態(tài)度和對(duì)知識(shí)的理解程度)正相關(guān);②本專(zhuān)業(yè)學(xué)生的自有特點(diǎn)是女同學(xué)平均成績(jī)比男同學(xué)略勝一籌;③深圳市外生源較市內(nèi)生源入學(xué)平均成績(jī)高。因此,我們選擇學(xué)生的性別、生源地、出勤表現(xiàn)和平時(shí)作業(yè)成績(jī)作為樣本的屬性變量,具體總結(jié)如表1所示。
此外,將所有學(xué)生分為兩類(lèi),期末考試成績(jī)大于等于60分記為“合格”,否則記為“不合格”。數(shù)據(jù)集中的部分樣本示例如表2所示。
我們?cè)贛ATLAB環(huán)境中編寫(xiě)核Fisher判別分析的實(shí)現(xiàn)代碼,并裝載收集到的原始數(shù)據(jù)集進(jìn)行實(shí)驗(yàn)研究。為了比較核Fisher判別分析對(duì)高職學(xué)生成績(jī)的預(yù)測(cè)效果,我們還測(cè)試了支持向量機(jī)SVM算法和C4.5決策樹(shù)方法,這兩種方法同樣在MATLAB環(huán)境中實(shí)現(xiàn)。在核Fisher判別分析和SVM建模時(shí),為了防止樣本中某個(gè)維度的數(shù)值過(guò)大而在核函數(shù)計(jì)算中淹沒(méi)其他維度數(shù)據(jù)的作用,我們先對(duì)原始數(shù)據(jù)進(jìn)行預(yù)處理,即將原始數(shù)據(jù)標(biāo)準(zhǔn)化在[-1,+1]的范圍內(nèi)。在使用C4.5決策樹(shù)建模時(shí),因?yàn)槠淠軌蛲瑫r(shí)處理連續(xù)值和離散值的屬性,訓(xùn)練和測(cè)試過(guò)程不受數(shù)據(jù)大小的影響,所以C4.5方法實(shí)現(xiàn)中仍舊保持原始數(shù)據(jù),不進(jìn)行額外處理。
由于實(shí)驗(yàn)用的原始數(shù)據(jù)集較小,如果簡(jiǎn)單地分為訓(xùn)練和測(cè)試兩個(gè)數(shù)據(jù)集合,評(píng)估效果容易出現(xiàn)偏差。為了能夠全面反映各種算法預(yù)測(cè)的精度,我們對(duì)整個(gè)樣本數(shù)據(jù)進(jìn)行多次劃分,每次從全體數(shù)據(jù)集中選擇10%的數(shù)據(jù)作為測(cè)試數(shù)據(jù),其余數(shù)據(jù)用于訓(xùn)練模型和確定最優(yōu)參數(shù)。此外,核Fisher判別分析和SVM均采用RBF徑向基核K(xi,xj)=exp(-γ||xi-xj||2)作為核函數(shù),其中γ是核參數(shù)。由于訓(xùn)練得到的模型的泛化能力高度依賴(lài)于核函數(shù)參數(shù)、正則化參數(shù)或懲罰系數(shù)的選擇,因此選擇最優(yōu)的參數(shù)很有必要。在實(shí)驗(yàn)中,核Fisher判別分析的正則化參數(shù)設(shè)為δ=10-3,核Fisher判別分析和SVM中用到的核參數(shù)γ和懲罰系數(shù)由10-交叉驗(yàn)證網(wǎng)格搜索法來(lái)確定[13]。在最優(yōu)參數(shù)設(shè)置下對(duì)測(cè)試樣本數(shù)據(jù)進(jìn)行預(yù)測(cè),每次測(cè)試的準(zhǔn)確率定義如下:
準(zhǔn)確率=×100%(14)
實(shí)驗(yàn)的結(jié)果是進(jìn)行十次測(cè)試的平均值,如表3所示。
從實(shí)驗(yàn)結(jié)果可以看出,基于核函數(shù)方法的核Fisher判別分析和SVM預(yù)測(cè)精度相近(其中核Fisher判別分析預(yù)測(cè)準(zhǔn)確度的平均值略微高于SVM),這一點(diǎn)與兩者在標(biāo)準(zhǔn)數(shù)據(jù)集上的測(cè)試結(jié)果一致[7],但是兩者的預(yù)測(cè)精度都明顯高于C4.5決策樹(shù)算法。C4.5決策樹(shù)方法訓(xùn)練模型時(shí),主要采用信息增益率作為選擇根結(jié)點(diǎn)和各內(nèi)部結(jié)點(diǎn)中分支屬性的評(píng)價(jià)標(biāo)準(zhǔn),訓(xùn)練速度快,得到的模型直觀(guān)性強(qiáng),規(guī)則易于被使用者理解。但是決策樹(shù)方法在訓(xùn)練集上的預(yù)測(cè)效果往往優(yōu)于測(cè)試集,即容易出現(xiàn)過(guò)擬合的現(xiàn)象。核Fisher判別分析和SVM利用的核函數(shù)將數(shù)據(jù)從低維的輸入空間映射到高維的特征空間,在特征空間都基于各自的分類(lèi)原理構(gòu)建線(xiàn)性分類(lèi)器使得兩類(lèi)數(shù)據(jù)集盡可能的分開(kāi),得到的線(xiàn)性分類(lèi)器經(jīng)過(guò)核函數(shù)映射回輸入空間后,即成為非線(xiàn)性分類(lèi)器。因此,核Fisher判別分析和SVM得到的預(yù)測(cè)模型泛化性能良好,能夠挖掘出輸入樣本屬性與其類(lèi)別之間隱含的非線(xiàn)性復(fù)雜關(guān)系。另外,本文用到的原始實(shí)驗(yàn)數(shù)據(jù)采集自學(xué)生的實(shí)際情況,其中包含著一部分不完全、有噪聲的數(shù)據(jù),比如有些學(xué)生學(xué)習(xí)能力強(qiáng)、成績(jī)突出,但是有個(gè)別作業(yè)沒(méi)有提交或是遲到的情況,卻依然會(huì)通過(guò)考試。噪聲數(shù)據(jù)會(huì)使得決策樹(shù)方法產(chǎn)生的過(guò)擬合現(xiàn)象更加嚴(yán)重,減小了泛化能力,從而影響測(cè)試效果。與之對(duì)應(yīng)的是,核Fisher判別分析和SVM分類(lèi)的基本原理保證了盡可能將噪聲數(shù)據(jù)的影響降到最低,所以會(huì)取得較好的預(yù)測(cè)效果。
四、結(jié)束語(yǔ)
在我國(guó)的長(zhǎng)期規(guī)劃中,高等職業(yè)教育受到越來(lái)越多的重視。基于目前高職教學(xué)和生源的自有特點(diǎn),建立準(zhǔn)確的學(xué)生考試成績(jī)預(yù)測(cè)模型,能夠幫助教師提前評(píng)估教學(xué)成果,改進(jìn)教學(xué)方法,對(duì)提高教學(xué)質(zhì)量具有非常重要的意義。本文在MATLAB環(huán)境中建立了基于核Fisher判別方法的學(xué)生考試成績(jī)預(yù)測(cè)模型,可以在期末考試之前,根據(jù)學(xué)生的自身特點(diǎn)和平時(shí)表現(xiàn)來(lái)預(yù)測(cè)其成績(jī)。在以本校高職學(xué)生為研究對(duì)象的實(shí)驗(yàn)中,核Fisher判別方法取得了良好的預(yù)測(cè)效果,可以成為一線(xiàn)教師提高教學(xué)的有力工具。同時(shí),只要能夠正確地選擇輸入變量的屬性,該模型可以被直接推廣到一般本科院校的學(xué)生考試成績(jī)預(yù)測(cè)中,同時(shí)也為后續(xù)建立教育信息化決策系統(tǒng)打下基礎(chǔ)。
在后續(xù)的研究中,可以在兩個(gè)方面進(jìn)行進(jìn)一步的拓展。第一,在實(shí)際情況中,經(jīng)常會(huì)出現(xiàn)通過(guò)考試的學(xué)生數(shù)量遠(yuǎn)遠(yuǎn)超過(guò)未通過(guò)考試的學(xué)生數(shù)量,使得不同類(lèi)別的原始采樣數(shù)據(jù)數(shù)量不平衡,這有可能影響模型的泛化能力。未來(lái)可以考慮如何針對(duì)不平衡數(shù)據(jù)集進(jìn)行訓(xùn)練和測(cè)試。第二,本文建立的分類(lèi)模型,僅僅可以根據(jù)輸入向量來(lái)預(yù)測(cè)學(xué)生是否通過(guò)考試,而不能預(yù)測(cè)學(xué)生具體的考試分?jǐn)?shù)。期望以后能夠應(yīng)用基于核函數(shù)的回歸分析算法[11],進(jìn)行學(xué)生成績(jī)的分?jǐn)?shù)預(yù)測(cè)。
參考文獻(xiàn):
[1]孫力,程玉霞.大數(shù)據(jù)時(shí)代網(wǎng)絡(luò)教育學(xué)習(xí)成績(jī)預(yù)測(cè)的研究與實(shí)現(xiàn)――以本科公共課程統(tǒng)考英語(yǔ)為例[J]. 開(kāi)放教育研究,2015(3): 74-80.
[2]黃振功.決策樹(shù)在高校計(jì)算機(jī)等級(jí)考試成績(jī)分析的應(yīng)用[J].科技資訊,2013(25):18-19.
[3]武彤,王秀坤.決策樹(shù)算法在學(xué)生成績(jī)預(yù)測(cè)分析中的應(yīng)用[J].微計(jì)算機(jī)信息,2010(3): 209-211.
[4]于立紅,張建偉.基于數(shù)據(jù)挖掘的高職生成績(jī)分析與預(yù)測(cè)[J].鄭州輕工業(yè)學(xué)院學(xué)報(bào),2006(3): 77-79.
[5]邱文教.基于人工神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)成績(jī)預(yù)測(cè)[J].計(jì)算機(jī)與信息技術(shù),2010(4): 5-6.
[6]李建萍.基于加權(quán)支持向量機(jī)的學(xué)習(xí)成績(jī)預(yù)測(cè)模型[J].中國(guó)科教創(chuàng)新導(dǎo)刊,2009(14): 137-138.
[7]Mika S, R tsch G, Weston J, et al. Fisher discriminant analysis with kernels[C]. Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop.
[8]李建云,邱菀華.核Fisher判別分析方法評(píng)估消費(fèi)者信用風(fēng)險(xiǎn)[J].系統(tǒng)工程理論方法應(yīng)用,2004(6): 548-552.
[9]李映,焦李成.基于核Fisher判別分析的目標(biāo)識(shí)別[J].西安電子科技大學(xué)學(xué)報(bào), 2003(2):179-182.
[10]Bishop C.Pattern Recognition and Machine Learning[M]. Springer Science & Business Media, 2006.
[11]Vapnik V.The nature of statistical learning theory[M]. Springer Science & Business Media, 2013.
關(guān)鍵字:城市內(nèi)澇;主要原因;對(duì)策
Abstract: City waterlogging occurs mainly city weather, topography and other natural causes, land expansion, drainage system and the city in the process of not perfect, people of poor quality, causes. City waterlogging has seriously affected the normal and orderly development of the city, but also a threat to the safety of public life and property. So we need to improve the drainage system, the rational use of land, improving the quality of citizens and other measures, reduce the city waterlogging may occur, reduce the harm, promote the orderly development of the city economy, society etc.
Key words:City waterlogging; reason; countermeasure
中圖分類(lèi)號(hào):P333.2文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2095-2104(2013)
近年來(lái)中國(guó)城市內(nèi)澇災(zāi)害頻發(fā),嚴(yán)重影響了整個(gè)城市各方面的發(fā)展,同時(shí)也威脅著國(guó)民的生命和財(cái)產(chǎn)安全。2011年8月3日,杭州、嘉興、衢州、溫州、寧波等地帶相繼發(fā)生嚴(yán)重內(nèi)澇,水位最高達(dá)到50厘米;之后中國(guó)城市內(nèi)澇災(zāi)害在2012年集中爆發(fā),4月13日,深圳特區(qū)200多個(gè)地點(diǎn)發(fā)生不同程度的內(nèi)澇,近90萬(wàn)人口的生活和工作受影響;7月21日,首都北京遭遇了重大內(nèi)澇,全城出現(xiàn)了43個(gè)橋下或低地積水點(diǎn),造成多人回家困難,甚至出現(xiàn)了人員傷亡;接著7月25日,天津又發(fā)生了內(nèi)澇災(zāi)害,根據(jù)網(wǎng)上圖片的顯示,最高水位可達(dá)到2米左右,人們都能夠在水上劃橡皮艇、沖鋒舟;爾后9月8日-10日,重慶和四川等城市爆發(fā)嚴(yán)重內(nèi)澇,水位達(dá)到200多毫米,造成多條國(guó)道中斷、引發(fā)山體滑坡。
可見(jiàn)城市內(nèi)澇不僅僅影響著城市居民的人身和財(cái)產(chǎn)安全,也影響著城市的交通、經(jīng)濟(jì)、社會(huì)的正常運(yùn)行。改變城市內(nèi)澇現(xiàn)狀,減少其發(fā)生的頻率,已經(jīng)成為城市發(fā)展進(jìn)程中的重要任務(wù)。而要完成這項(xiàng)任務(wù),就需要充分了解城市內(nèi)澇發(fā)生的原因。
1 城市內(nèi)澇的主要原因
1.1自然原因
1.1.1天氣原因
縱觀(guān)城市內(nèi)澇的發(fā)生狀況,不難發(fā)現(xiàn)天氣,尤其是降雨天氣是城市內(nèi)澇發(fā)生的重要原因之一,而且其降雨基本有相同的特點(diǎn),即雨量大、持續(xù)時(shí)間長(zhǎng)、且較為集中。就拿北京的內(nèi)澇災(zāi)害為例,其平均降水量達(dá)到170mm,降水量為61年以來(lái)最大;且降水主要集中在21日晚17-20點(diǎn)鐘,在這段時(shí)間城內(nèi)增加了多出積水點(diǎn);與此同時(shí),降水的時(shí)間從上午10點(diǎn)一直下到晚上10點(diǎn)以后,持續(xù)了12個(gè)小時(shí)以上。罕見(jiàn)的高強(qiáng)度、長(zhǎng)時(shí)間、集中的大暴雨自然會(huì)給整個(gè)城市帶來(lái)內(nèi)澇災(zāi)害。
1.1.2地形地貌
城市內(nèi)澇的發(fā)生與其所在地的地形地貌關(guān)系密切,通常地勢(shì)較高、地形較為平坦開(kāi)闊、地面滲水性較好的城市,發(fā)生內(nèi)澇的可能較小。反之,發(fā)生內(nèi)澇的可能就大。重慶內(nèi)澇災(zāi)害就與其地形地貌相關(guān),重慶周?chē)嗌?、多丘陵,故而其城市多依山而建,地形較為破碎,且面積狹小,凹凸不平,所以水流集中于城市低地,易造成內(nèi)澇。
1.2人為原因
1.2.1城鎮(zhèn)化速度加快
隨著中國(guó)城鎮(zhèn)化速度逐漸加快,土地急劇擴(kuò)張,造成了城市土地資源的嚴(yán)重緊缺。為了發(fā)展,很多城市都采用填湖造地、填海造地等方式增加土地面積,使得湖泊、池塘、海洋的面積逐漸減少,天然蓄水池的蓄洪能力下降、調(diào)洪能力減弱,大量洪水外泄,造成城市內(nèi)澇。
另外,人們還使用各種方法對(duì)洼地、軟土地進(jìn)行加固加硬措施,降低了土地的滲水能力,阻礙了地下水的正常循環(huán),使大量的地表積水只能從有限的排水系統(tǒng)中排出,造成城市內(nèi)澇。
1.2.2排水系統(tǒng)不完善
排水系統(tǒng)不完善是發(fā)生城市內(nèi)澇的最主要原因,也是當(dāng)前城市基礎(chǔ)建設(shè)的當(dāng)務(wù)之急。城市排水系統(tǒng)不完善,主要表現(xiàn)在以下三個(gè)方面:
(1)排水系統(tǒng)的設(shè)計(jì)不合理
在設(shè)計(jì)排水系統(tǒng)時(shí),一般要對(duì)所在城市的地形、地貌、降雨量、主要的湖泊、水系、預(yù)留地的應(yīng)用等進(jìn)行考察和研究,之后依據(jù)具體情況才能進(jìn)行合理的設(shè)計(jì)。然而很多城市的排水系統(tǒng)在設(shè)計(jì)之初,習(xí)慣于參照其他城市或者國(guó)家已有的排水系統(tǒng),不進(jìn)行深入的調(diào)查研究,也不結(jié)合自身城市的實(shí)際狀況,具體問(wèn)題具體分析,造成排水系統(tǒng)設(shè)計(jì)不合理。
另外很多城市通常會(huì)將雨水直接排放,在排水系統(tǒng)設(shè)計(jì)中只重視“排”,而不重視“收”浪費(fèi)了雨水資源。同時(shí)還出現(xiàn)了雨水和污水、生活污水和工業(yè)污水等混排現(xiàn)象。雨水和生活污水中并沒(méi)有大量的生化物質(zhì),加工處理之后,能夠用于灌溉農(nóng)田、工業(yè)生產(chǎn)等領(lǐng)域。而工業(yè)污水中生化物質(zhì)含量極大,對(duì)人體和環(huán)境的危害也最多,故而工業(yè)污水的排放通常要進(jìn)行多道處理工序,才能夠達(dá)到排放標(biāo)準(zhǔn)。
(2)排水系統(tǒng)的質(zhì)量較低
排水系統(tǒng)作為城市的基礎(chǔ)設(shè)施建設(shè)之一,其對(duì)工程的質(zhì)量要求極高。而實(shí)際建造中,很多城市排水系統(tǒng)的質(zhì)量令人不敢恭維。主要表現(xiàn)在建造管道的材料較差,水流處理技術(shù)含量較低等。
為了保證排水率,減少地下水的污染,城市排水系統(tǒng)的管道一般會(huì)選用質(zhì)量較好、耐用性強(qiáng)、密度較小的材料。而在管道的實(shí)際建造中,為了節(jié)約成本,提高工程利潤(rùn),很多施工單位會(huì)以次充好,將較劣質(zhì)的管道設(shè)置在排水系統(tǒng)中,故而很多管道出現(xiàn)了裂縫、漏水等現(xiàn)象,縮短了管道的使用壽命,阻礙了排水系統(tǒng)的正常運(yùn)行,同時(shí)還污染了地下水資源。
除此之外,處理技術(shù)較低也是整個(gè)排水系統(tǒng)落后的因素之一。雨水或者污水經(jīng)過(guò)收集之后,會(huì)集中到污水廠(chǎng)進(jìn)行集中處理排放。而由于很多城市污水廠(chǎng)的污水處理技術(shù)較低,每一次處理的污水流量較少,排放達(dá)不到標(biāo)準(zhǔn),故而使很多污水積聚。當(dāng)城市發(fā)生內(nèi)澇時(shí),排水系統(tǒng)壓力過(guò)大,排澇能力自然下降。
(3)排水系統(tǒng)的維護(hù)體系不健全
目前,很多城市的財(cái)政性資金中只有4%用于排水系統(tǒng)的維護(hù),而市民和政府工作人員幾乎都對(duì)排水系統(tǒng)抱著一勞永逸的態(tài)度,不重視或者不在乎其維護(hù)。資金的短缺、人們觀(guān)念的落后使得排水系統(tǒng)的維護(hù)體系至今仍不健全。在實(shí)際生活或者工作中,排水系統(tǒng)年久失修,排水管道和窖井基本處于無(wú)人管理的狀態(tài),只有當(dāng)出現(xiàn)重大內(nèi)澇或者重大堵塞時(shí),才可是緊急疏通和搶修。這些都不利于排水系統(tǒng)的正常運(yùn)行,也減少了排水系統(tǒng)的使用年限,故而在城市發(fā)生內(nèi)澇時(shí),排水系統(tǒng)經(jīng)常處于失靈狀態(tài)。
當(dāng)然,也有很多城市制定了相應(yīng)的維護(hù)體系,并且安排人員進(jìn)行維護(hù)。但是在維護(hù)的過(guò)程中,工具落后,機(jī)械化水平和科技含量較低,疏通和搶修工作質(zhì)量不高。另外,由于排水系統(tǒng)維護(hù)的特殊性,很多水利專(zhuān)業(yè)的人員放棄從事這項(xiàng)工作或者鄙視這項(xiàng)工作,故而真正的工作人員往往是科學(xué)文化素質(zhì)和專(zhuān)業(yè)知識(shí)較為欠缺的人員,這樣的維護(hù)效果自然不佳。
1.2.3部分市民素質(zhì)較差
城市內(nèi)澇與排水管道堵塞息息相關(guān),而排水管道堵塞的罪魁禍?zhǔn)拙褪鞘忻褡约?。在生活中,很多市民?xí)慣于將各種垃圾傾倒到排水管網(wǎng)之中,而且其多半是瓜果皮、塑料袋、剩菜剩飯、煤塊等固體的難以被水溶解的成分。日積月累,下水道的入口及管道中大量的垃圾堆放起來(lái),使下水道逐漸堵塞,排澇能力下降,城市水澇嚴(yán)重。
了解了城市內(nèi)澇的原因,我們就需要對(duì)癥下藥,對(duì)其進(jìn)行防治和處理,減少城市內(nèi)澇發(fā)生的可能性。
2 城市內(nèi)澇的防治對(duì)策
2.1完善預(yù)報(bào)系統(tǒng)及暴雨應(yīng)急預(yù)案
對(duì)于降雨等自然原因引起的內(nèi)澇,要加強(qiáng)對(duì)天氣的觀(guān)測(cè)和預(yù)報(bào),建立快速應(yīng)急預(yù)案。
在中國(guó),天氣觀(guān)測(cè)和預(yù)報(bào)采用了先進(jìn)的雷達(dá)技術(shù),每十分鐘就能夠更新一次。故而可以通過(guò)對(duì)天氣的觀(guān)測(cè)和預(yù)報(bào),提前探知城市的降雨量,做好預(yù)防措施,降低城市內(nèi)澇產(chǎn)生的嚴(yán)重危害。同時(shí)還要建立完善的暴雨應(yīng)急預(yù)案。在發(fā)生特大特急暴雨時(shí),及時(shí)啟動(dòng)預(yù)案進(jìn)行災(zāi)后補(bǔ)償,這樣也能夠減少城市內(nèi)澇的危害。
除此之外,要建立和完善國(guó)家和城市的GIS(地理信息系統(tǒng)),通過(guò)數(shù)據(jù)庫(kù)、地理信息、多媒體、遠(yuǎn)程通信等先進(jìn)技術(shù),將城市的內(nèi)澇及排澇狀況連成一個(gè)整體,減少城市內(nèi)澇發(fā)生的可能。
2.2降低地面硬化率
面對(duì)當(dāng)前地面不斷硬化、滲水困難的狀況,我們可以采用兩種方式來(lái)降低地面的硬化率,改變這種現(xiàn)狀,一種是采用非硬質(zhì)滲水性較好的材料進(jìn)行鋪設(shè),另一種是采用有滲水能力的硬質(zhì)材料進(jìn)行鋪設(shè)。
非硬質(zhì)滲水性較好的材料比如滲水草皮,其鋪設(shè)出來(lái)的地面柔軟舒適,使整個(gè)城市更加溫暖有情,同時(shí)由于其滲水性較好,故而能夠使城市的地面實(shí)現(xiàn)正常的水循環(huán),還能夠提高城市的空氣質(zhì)量,保護(hù)城市環(huán)境,減少城市內(nèi)澇的出現(xiàn);具有滲水能力的硬質(zhì)材料較為多見(jiàn),比如鏤空磚。它主要應(yīng)用于人行道的鋪設(shè),其鋪設(shè)的道路防滑性較好,滲水能力也較強(qiáng),在空心部位種植叢草,既能夠提高整個(gè)城市的植被覆蓋率,也能夠解決雨水下滲的問(wèn)題。
2.3合理利用土地資源
城市土地資源本來(lái)就極為有限,所以要合理規(guī)劃、合理利用,禁忌盲目擴(kuò)張。在進(jìn)行土地資源規(guī)劃時(shí),要充分考慮城市的自然條件,比如地形地貌、風(fēng)向等,之后合理劃分工業(yè)區(qū)、住宅區(qū)、商業(yè)區(qū)。減少填湖造地、填海造地的面積,恢復(fù)它們的蓄洪和調(diào)洪能力,盡量節(jié)省土地資源,控制城市建筑的距離和數(shù)量,保證在出現(xiàn)暴雨時(shí),能夠合理排洪。
2.4完善城市排水系統(tǒng)
完善排水系統(tǒng)是整個(gè)城市內(nèi)澇治理的關(guān)鍵環(huán)節(jié),也是最為有效快速的環(huán)節(jié)。通常要從設(shè)計(jì)、建造、維護(hù)等三個(gè)方面,完善城市的排水系統(tǒng)。
工程設(shè)計(jì)師在設(shè)計(jì)城市排水系統(tǒng)時(shí),要進(jìn)行實(shí)地考察和測(cè)量,了解城市的地理狀況和天氣狀況,之后根據(jù)不同的功能區(qū)設(shè)置合理的管網(wǎng)系統(tǒng),同時(shí)將雨水、生活污水、工業(yè)污水收集在不同的管道中,進(jìn)行分流處理,這樣才能夠保證排水系統(tǒng)的合理性和排洪能力。
施工單位在建造排水系統(tǒng)的過(guò)程中,要提高自身的責(zé)任感和信用,使用質(zhì)地較好的材料,保證排水系統(tǒng)管道的使用壽命。同時(shí)要提高排水系統(tǒng)的科學(xué)技術(shù)含量,提高其排洪能力,保證在發(fā)生重大內(nèi)澇時(shí),排水系統(tǒng)的正常運(yùn)行。
除此之外,還有加強(qiáng)城市排水系統(tǒng)的維護(hù),建立完善的維護(hù)體系和維護(hù)制度,提供良好的待遇,吸引專(zhuān)業(yè)的排水系統(tǒng)維護(hù)人員,同時(shí)要提高維護(hù)的機(jī)械化和科技水平,淘汰落后的維護(hù)工具,確定定期維修和養(yǎng)護(hù)方案。只有這樣,才能夠延長(zhǎng)排水系統(tǒng)的使用壽命,提高其排洪能力。
2.5提高公民的素質(zhì)
針對(duì)下水道堵塞的問(wèn)題,相關(guān)部門(mén)需要采取一定的措施,比如發(fā)送與排水系統(tǒng)相關(guān)的傳單、派遣專(zhuān)業(yè)人員講課等,普及排水系統(tǒng)的相關(guān)知識(shí),提高公民的意識(shí)。同時(shí)要制定相應(yīng)的獎(jiǎng)懲政策,對(duì)那些不遵守排水系統(tǒng)管理的公民進(jìn)行罰款處罰,約束其不文明行為。
當(dāng)然,防治和處理城市內(nèi)澇的方式還有很多。通過(guò)這些措施,能夠在一定程度上減少城市內(nèi)澇發(fā)生的可能,降低其危害,同時(shí)也能夠進(jìn)一步促進(jìn)城市的快速穩(wěn)定有序發(fā)展。
參考文獻(xiàn):
[1] 丁燕燕,韓喬.城市內(nèi)澇的主要成因及防治對(duì)策[J].市政技術(shù).2012,(6).
1 人?橐蛩?
1.1 教學(xué)管理者
教學(xué)管理者是課程考試制度的制定者,一方面,他們要以上級(jí)管理者的政策為行動(dòng)指南,另一方面,又要面對(duì)來(lái)自課程考試改革的具體實(shí)際困難,所以常常會(huì)選擇現(xiàn)成的、固有的、傳統(tǒng)的課程考試模式,簡(jiǎn)單易行、容易控制、風(fēng)險(xiǎn)小、省時(shí)省力。
1.2 任課教師
任課教師是課程考試的執(zhí)行者[4],對(duì)傳統(tǒng)的考試模式比較熟悉,對(duì)創(chuàng)新課程考試模式缺乏足夠的認(rèn)識(shí)。近年來(lái),隨著各醫(yī)學(xué)院校不斷擴(kuò)招,護(hù)理專(zhuān)業(yè)學(xué)生逐年增加,總課時(shí)量成倍增加,任課教師工作量大,大部分護(hù)理教師是女教師,平時(shí)除了上班,還要照顧家庭,繼續(xù)學(xué)業(yè),為晉升職稱(chēng)做準(zhǔn)備,非常忙碌,很難抽出時(shí)間和精力用于課程考試改革,并且任課教師大多是從事護(hù)理專(zhuān)業(yè)研究的,從專(zhuān)業(yè)學(xué)習(xí)到成為教師,都很少有機(jī)會(huì)學(xué)習(xí)課程考試?yán)碚摷霸u(píng)價(jià)技術(shù),也很少有自行學(xué)習(xí)的動(dòng)機(jī),基本上是憑老教師傳授經(jīng)驗(yàn)和自己的主觀(guān)感受來(lái)實(shí)施課程考試。改革課程考試模式的難度與工作量均很大,而且要付出大量精力,還要承擔(dān)可能的風(fēng)險(xiǎn)與壓力,大部分任課教師存在畏難情緒,進(jìn)行課程考試改革的意愿不強(qiáng),熱情不高[5]。
1.3 護(hù)理學(xué)生
隨著高校的不斷擴(kuò)招和生源的持續(xù)減少,出現(xiàn)了學(xué)生文化基礎(chǔ)總體比較薄弱的現(xiàn)象,學(xué)生缺乏堅(jiān)實(shí)的學(xué)習(xí)功底和較好的學(xué)習(xí)能力,學(xué)習(xí)主動(dòng)性不強(qiáng),面對(duì)多次考試和多樣化考試,學(xué)生畏難情緒較大,并且進(jìn)行階段性考試和綜合性考核需要較多時(shí)間和精力的投入,但是護(hù)生在校學(xué)習(xí)時(shí)間較短,學(xué)習(xí)課程多,學(xué)習(xí)任務(wù)重,課余時(shí)間少,時(shí)間和精力都難以保證,效果不佳。
2 制度因素
受傳統(tǒng)教育觀(guān)念的影響,家長(zhǎng)、任課教師、學(xué)生、招聘單位等都是看重學(xué)生的卷面分?jǐn)?shù)和各種及格率、通過(guò)率,而非學(xué)生的綜合能力,學(xué)校在考核教師時(shí),多注重課時(shí)量而非學(xué)生考試情況,《護(hù)理學(xué)基礎(chǔ)》課程考試多在每學(xué)期期末,教師要整理教案,書(shū)寫(xiě)年度工作計(jì)劃、總結(jié),出卷、閱卷,時(shí)間緊,任務(wù)多,任課教師往往愿意選擇簡(jiǎn)單易行、評(píng)分標(biāo)準(zhǔn)簡(jiǎn)單、難出差錯(cuò)的考核模式,考試后的試卷分析也常常只是流于形式。教師晉升職稱(chēng)時(shí),科研分?jǐn)?shù)比教學(xué)分?jǐn)?shù)所占比例大很多,導(dǎo)致大部分教師把心思放在申報(bào)課題、撰寫(xiě)論文及編寫(xiě)教材上,而非課程考試改革上,對(duì)于以追求學(xué)術(shù)地位為榮的教師來(lái)說(shuō),探索、改革考試模式無(wú)疑是一件付出大而收益小的事情。
3 設(shè)備設(shè)施因素
《護(hù)理學(xué)基礎(chǔ)》包含出入院護(hù)理、清潔護(hù)理、飲食護(hù)理、用藥護(hù)理、排泄護(hù)理等8大基本理論模塊和20多項(xiàng)基本護(hù)理技能,內(nèi)容多、實(shí)踐性強(qiáng),除去講授基本知識(shí)之外的機(jī)動(dòng)課時(shí)不多,想要進(jìn)行綜合性課程考核,課時(shí)難以保證,并且實(shí)驗(yàn)用物、考試場(chǎng)地、教師人數(shù)、教學(xué)資源,如教學(xué)視頻,相關(guān)圖書(shū)等都不是很充足,較難滿(mǎn)足開(kāi)展創(chuàng)新型綜合性《護(hù)理學(xué)基礎(chǔ)》課程考核的需求,進(jìn)行《護(hù)理學(xué)基礎(chǔ)》課程考核改革的難度較大。
南寧市教育局中小學(xué)招生辦公室將于7月8日把中考學(xué)生成績(jī)單發(fā)放至初中學(xué)校,由學(xué)校發(fā)放到考生手中。
成績(jī)呈現(xiàn)方式
筆試各科成績(jī)劃分為八個(gè)等級(jí),原則上按考生考試人數(shù)劃比例,即由高到低大致為:A+(約占5%)、A(約占10%)、B+(約占15%)、B(約占20%)、C+(約占20%)、C(約占15%)、D(約占10%)、E(約占5%)。
評(píng)卷、復(fù)查
2019年山西臨汾專(zhuān)升本考試各科試卷全部采取網(wǎng)上評(píng)閱的方式。答題卡的掃描及選擇題答卷的評(píng)閱工作由省招考中心組織實(shí)施;非選擇題答卷的評(píng)閱工作由承擔(dān)評(píng)卷工作的院校全權(quán)負(fù)責(zé),經(jīng)費(fèi)包干。評(píng)卷院校必須嚴(yán)格執(zhí)行有關(guān)評(píng)卷實(shí)施細(xì)則,做到科學(xué)、規(guī)范、公平、公正。省招考中心向評(píng)卷院校派駐質(zhì)量監(jiān)督組和技術(shù)支持組,對(duì)評(píng)卷工作進(jìn)行監(jiān)督檢查和技術(shù)支持。
2019年山西臨汾專(zhuān)升本考試成績(jī)查詢(xún)時(shí)間為6月26日,考生登錄“山西招生考試網(wǎng)”查詢(xún)考試成績(jī)。若考生對(duì)本人成績(jī)有疑義,可于6月27日至28日在原確認(rèn)點(diǎn)申請(qǐng)成績(jī)復(fù)查,復(fù)核結(jié)果由確認(rèn)點(diǎn)負(fù)責(zé)通知考生。