前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的大氣污染主要因子主題范文,僅供參考,歡迎閱讀并收藏。
關(guān)鍵詞: 天氣形勢(shì);大氣污染物擴(kuò)散;傳播;氣象條件
中圖分類號(hào):X51 文獻(xiàn)標(biāo)識(shí)碼:A
1 大氣污染物成分與臭氣的時(shí)空分布
從2009年開(kāi)始,區(qū)環(huán)保部門在城東的椒江一中、椒江二中,中心區(qū)楓南小區(qū),西南區(qū)康平小區(qū)以及城西邊防修船廠設(shè)置臭氣監(jiān)測(cè)點(diǎn)。3a監(jiān)測(cè)臭氣各為103次(d)、158次、160次。2009~2010年每月實(shí)測(cè)10次以上的分布在1~4月、9~12月。2011年臭氣發(fā)生最為頻繁,全年9個(gè)月超過(guò)10次。
根據(jù)人體感覺(jué)臭氣濃度等級(jí)分為5個(gè)等級(jí),Ⅰ級(jí)為臭氣較輕;Ⅱ級(jí)為臭氣明顯;Ⅲ級(jí)為較重臭氣影響;Ⅳ級(jí)嚴(yán)重臭氣影響;Ⅴ級(jí)特別嚴(yán)重臭氣影響。其中Ⅰ級(jí)、Ⅱ級(jí)對(duì)人體健康影響不大;Ⅲ級(jí)、Ⅳ級(jí)對(duì)人體健康產(chǎn)生一定影響,導(dǎo)致人體不適;Ⅴ級(jí)則導(dǎo)致接觸臭氣的人群產(chǎn)生強(qiáng)烈不適,少數(shù)人員會(huì)產(chǎn)生頭疼、惡心等癥狀,嚴(yán)重影響城區(qū)居民生活。
2 天氣形勢(shì)對(duì)臭氣發(fā)生的影響分析
通過(guò)對(duì)2011年1月~2012年4月監(jiān)測(cè)資料和相應(yīng)時(shí)間椒江氣象臺(tái)預(yù)報(bào)數(shù)據(jù)的分析,發(fā)現(xiàn)在污染源相對(duì)平穩(wěn)的時(shí)段里,影響大氣污染物濃度的主要因素是天氣形勢(shì)及其控制下的局地輸送擴(kuò)散條件。本文通過(guò)對(duì)歷史氣象資料的分析,發(fā)現(xiàn)在臭氣發(fā)生時(shí)椒江區(qū)主要處于以下幾種天氣形勢(shì)。
2.1 高壓底部型
當(dāng)椒江區(qū)處在高壓底部,大氣層結(jié)穩(wěn)定,上午極易出現(xiàn)灰霾與輕霧,午后易出現(xiàn)偏東風(fēng)。根據(jù)洪家站資料統(tǒng)計(jì),發(fā)生臭氣日有25d出現(xiàn)過(guò)霾與輕霧天氣現(xiàn)象,占總天數(shù)的55.56%;這種天氣上午比較不利于大氣污染物的垂直輸送,下午在偏東風(fēng)的引導(dǎo)下,污染物向下風(fēng)方的城區(qū)水平輸送。故在此形勢(shì)下監(jiān)測(cè)到城區(qū)臭氣污染最為嚴(yán)重,共有42次。且一年四季均有分布,春、秋兩季略偏多。
2.2 高壓脊型
在冷空氣過(guò)后,椒江區(qū)高空高壓脊控制,天氣晴朗,冷空氣下沉和地表輻射冷卻作用,不利于臭氣垂直輸送,增大低層臭氣濃度。椒江區(qū)臭氣監(jiān)測(cè)資料顯示此型天氣發(fā)生臭氣有39次,僅次于高壓底部型,主要集中在冬季與秋末冷空氣活動(dòng)頻繁且強(qiáng)度強(qiáng)的時(shí)候。
2.3 高壓后部型
是指椒江區(qū)處在高壓后部偏南氣流區(qū),水汽增多,空氣濕潤(rùn),地面氣溫回升明顯,系統(tǒng)較穩(wěn)定時(shí),對(duì)大氣污染物擴(kuò)散不利。此型天氣形勢(shì)發(fā)生臭氣有27次(d),監(jiān)測(cè)臭氣發(fā)生第3多,時(shí)間分布與高壓底部型類似。
2.4 臺(tái)風(fēng)(無(wú)降水)型
是指椒江區(qū)受臺(tái)風(fēng)或臺(tái)風(fēng)影響,沒(méi)有降水,以偏東風(fēng)或東北偏東風(fēng)為主,使臭氣往城區(qū)方向水平輸送。此型天氣發(fā)生臭氣有9次(d),臭氣發(fā)生時(shí)間分布在7~9月臺(tái)風(fēng)季。
2.5 地面倒槽型
是指椒江區(qū)受地面倒槽影響,容易出現(xiàn)高溫高濕天氣,非常不利于大氣污染物的擴(kuò)散。此型天氣發(fā)生臭氣有7次,資料顯示四季均有發(fā)生。
2.6 臺(tái)風(fēng)(有降水)型
是指夏季椒江區(qū)受臺(tái)風(fēng)或臺(tái)風(fēng)影響,有降水,以偏東風(fēng)與東北偏東風(fēng)為主,使臭氣往城區(qū)方向擴(kuò)散。據(jù)統(tǒng)計(jì)發(fā)生臭氣現(xiàn)象3次,其中2次日降水量稀少只有0~2mm,1次達(dá)到35.8 mm,由此可見(jiàn),降水量過(guò)少與過(guò)多均不利于臭氣濃度稀釋。
在不同的天氣形勢(shì)下,臭氣發(fā)生的影響程度也大不相同。高壓底部型天氣發(fā)生Ⅴ級(jí)臭氣次數(shù)最多為5次(d),其次是高壓后部型與臺(tái)風(fēng)(有降水)型分別為3次(d)、2次(d),最值得注意的是臺(tái)風(fēng)(有降水)型發(fā)生臭氣只有3次,但均為Ⅴ級(jí),可見(jiàn)這種天氣最易造成臭氣擾城現(xiàn)象。1~4型天氣形勢(shì)發(fā)生Ⅲ級(jí)及以上臭氣的概率極高,占總次數(shù)的77.96%,此4種形勢(shì)是我們將來(lái)對(duì)企業(yè)排放預(yù)警預(yù)報(bào)的關(guān)鍵。
3 風(fēng)、溫度、降水氣象因子對(duì)椒江醫(yī)化園區(qū)臭氣排放的影響分析
綜上分析,我們得出在污染物排放沒(méi)有發(fā)生變化的條件下,氣象條件在惡臭氣體的擴(kuò)散、傳播上起著很重要的作用。下面,我們可以來(lái)分析風(fēng)、溫度、降水氣象因子對(duì)椒江醫(yī)化園區(qū)臭氣排放的影響。
3.1 風(fēng)向風(fēng)速
風(fēng)向決定惡臭氣體傳播方向、范圍。風(fēng)速則決定擴(kuò)散速率,當(dāng)風(fēng)速大,向空間傳播距離遠(yuǎn)、范圍大,降低惡臭濃度;當(dāng)風(fēng)速越小,惡臭氣體擴(kuò)散范圍也越小,離污染源越近濃度越大,惡臭就越嚴(yán)重。由于椒江醫(yī)化企業(yè)主要集中城東區(qū),所以當(dāng)偏東風(fēng)(東北-東南風(fēng))出現(xiàn),市區(qū)位于下風(fēng)向,容易造成臭氣移向生活區(qū),影響居民健康,根據(jù)監(jiān)測(cè)資料分析,在2011年1月~2012年4月期間共出現(xiàn)177次惡臭天氣, 18次等級(jí)為Ⅴ級(jí),對(duì)比洪家站氣象資料,我們發(fā)現(xiàn)16次Ⅴ級(jí)發(fā)生洪家站風(fēng)向均為偏東風(fēng)向(東北-東南風(fēng)),占總數(shù)的88.89%。所以通過(guò)椒江的風(fēng)向風(fēng)速預(yù)報(bào),對(duì)醫(yī)化企業(yè)排放大氣污染物的時(shí)間和濃度提出建議,一定程度上可以降低椒江臭氣影響擴(kuò)散程度。
3.2 降水
前面提到由于椒江雨量太大、雨量太小均導(dǎo)致大氣污染物濃度上升,利用降水的定量預(yù)報(bào)對(duì)椒江醫(yī)化企業(yè)排放大氣污染物的時(shí)間和濃度提出一定建議,也是措施之一。
3.3 溫度
溫度主要表現(xiàn)為溫度層結(jié),即大氣層結(jié)穩(wěn)定性的影響。當(dāng)大氣層結(jié)穩(wěn)定,特別是出現(xiàn)逆溫時(shí),空氣對(duì)流弱,使臭氣集中于下層,加劇惡臭,此種情形在冬季早晨前后最易出現(xiàn),同時(shí)也多數(shù)出現(xiàn)在霧霾天氣中。當(dāng)大氣層結(jié)不穩(wěn)定,易產(chǎn)生對(duì)流天氣,有利于臭氣向上空傳播擴(kuò)散,從而降低近地面層臭氣濃度,此種情形在夏季的下午到傍晚熱對(duì)流有所增強(qiáng)或出現(xiàn)對(duì)流天氣時(shí)常是這種情形。所以可根據(jù)大氣溫度層結(jié)的變化,企業(yè)可適當(dāng)調(diào)整臭氣排放作業(yè)時(shí)間,避免臭氣大面積擴(kuò)散。
同時(shí),利用天氣系統(tǒng)的變化對(duì)抑制臭氣的發(fā)生也起到了關(guān)鍵的作用,這些都將對(duì)提高椒江區(qū)空氣清潔度,減少不良環(huán)境對(duì)居民生活的影響是非常有效的。
參考文獻(xiàn)
關(guān)鍵詞:北侖 空氣質(zhì)量 特征
中圖分類號(hào):X22 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3973(2011)005-109-03
1. 前言
隨著工業(yè)化發(fā)展進(jìn)程的加快和人們對(duì)于環(huán)境需求的不斷提升,環(huán)境空氣污染已經(jīng)成為目前城市發(fā)展所面臨的最為突出的難題之一,環(huán)境空氣質(zhì)量的好壞不僅直接影響到城市居民的健康,而且給周邊動(dòng)植物的生長(zhǎng)和文物古跡的保護(hù)等都有直接或者間接的影響。為此,王宏等結(jié)合氣象條件對(duì)福州市的環(huán)境空氣質(zhì)量情況進(jìn)行了特征分析,并得出了氣象與環(huán)境空氣質(zhì)量之間的一些相關(guān)性,而劉新玲等和楊書申等分別對(duì)比分析了山東五城市和北京、上海兩城市之間的大氣污染特征,均認(rèn)為由于不同城市之間氣象因素、企業(yè)類型、企業(yè)規(guī)模等方面的不同會(huì)有不同的環(huán)境污染特征和成因。
北侖區(qū)作為一個(gè)臨港大工業(yè)基地,集中了包括北侖電廠、寧波鋼鐵廠、臺(tái)塑化工、吉利汽車、申洲織造公司等在內(nèi)的眾多大型企業(yè),這些大型企業(yè)對(duì)北侖的環(huán)境空氣影響究竟如何已經(jīng)成為北侖區(qū)政府和老百姓關(guān)注的焦點(diǎn),也是北侖區(qū)進(jìn)一步打造適合移居城市的必要參數(shù)之一。本文通過(guò)深入分析2010年度北侖區(qū)域內(nèi)三套環(huán)境空氣自動(dòng)站的監(jiān)測(cè)數(shù)據(jù),對(duì)北侖區(qū)的環(huán)境空氣質(zhì)量特征和污染來(lái)源進(jìn)行了系統(tǒng)的研究,并針對(duì)現(xiàn)狀提出了一些相關(guān)的建議。
2. 實(shí)驗(yàn)方法
2.1 監(jiān)測(cè)點(diǎn)位及監(jiān)測(cè)項(xiàng)目
2.1.1 監(jiān)測(cè)點(diǎn)位
北侖區(qū)域目前共設(shè)置三個(gè)大氣環(huán)境空氣質(zhì)量自動(dòng)監(jiān)測(cè)點(diǎn)位,分別位于城中(監(jiān)測(cè)站),城東(寧波鋼鐵廠宿舍區(qū)),城西(青峙變電所),其中城東和城西位于工業(yè)區(qū)周邊。
2.1.2 監(jiān)測(cè)項(xiàng)目
可吸入顆粒物(PM10),二氧化硫(SO2,氮氧化物(NOx)。
2.2 監(jiān)測(cè)儀器和方法
采用三個(gè)固定的環(huán)境空氣自動(dòng)站(美國(guó)熱電環(huán)境儀器有限公司)進(jìn)行連續(xù)24小時(shí)自動(dòng)監(jiān)測(cè),并對(duì)小時(shí)均值、日均值、月均值、年均值進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析。其中儀器設(shè)各原理和型號(hào)為:(1)PM10的測(cè)定:β射線法。儀器為FH62C-14型可吸入顆粒物分析儀。(2)SO2的測(cè)定:紫外脈沖熒光法。儀器為43C型二氧化硫分析儀。(3)NOx的測(cè)定:化學(xué)發(fā)光法。儀器為42C型二氧化氮分析儀。
3. 結(jié)果與討論
3.1 污染物濃度的季節(jié)變化規(guī)律
圖1、圖2、圖3清楚的顯示了城中、城東、城西點(diǎn)位的SO2、NO2、PM10的月均值濃度情況,顯然,每個(gè)點(diǎn)位的SO2、NO2、PM10的濃度隨著季節(jié)的變化,始終呈現(xiàn)出一、四季度高,二、三季度低的變化趨勢(shì),這一結(jié)果與董蕙青等對(duì)廣西主要城市的研究結(jié)果基本一致,但是與劉新玲等的對(duì)于山東五城市的大氣特征研究結(jié)果(主要是SO2濃度)則略有差異,這種差異主要來(lái)自于北方典型的冬季燃煤采暖因素的影響,故南方地區(qū)冬季的污染物濃度基本與春季差別不大,而且相比于北方城市總體上濃度要低的多;此外,北侖區(qū)地屬亞熱帶季風(fēng)氣候區(qū),又臨東海,四季分明,受到這樣季節(jié)性氣候變化的影響,北侖區(qū)域氣候情況總體上表現(xiàn)為一、四季度空氣比較干燥,晝夜溫差明顯,大氣逆溫現(xiàn)象頻率較高,不利于污染物的傳輸擴(kuò)散,此外,較低的濕度和無(wú)植被覆蓋的地面也加劇了污染,尤其是可吸入顆粒物在環(huán)境空氣中的高濃度,而二、三季度太陽(yáng)輻射強(qiáng)度強(qiáng),逆溫層的生成時(shí)間縮短,大氣對(duì)流活動(dòng)旺盛,污染物擴(kuò)散較好,此外,夏季較多地降雨也使得污染物得到了溶解和沖刷作用,因此,總體上環(huán)境空氣質(zhì)量較好。
3.2 污染物濃度的日變化規(guī)律分析
為了考察三個(gè)污染因子在一天當(dāng)中的濃度變化情況,隨機(jī)抽取了2月、4月、6月、8月、10月和12月的一天對(duì)這三個(gè)因子的濃度變化情況進(jìn)行分析,結(jié)果如圖4、圖5、圖6所示,顯然SO2在08:00~12:00范圍內(nèi)呈現(xiàn)出一個(gè)濃度的最高峰,凌晨和夜間濃度最低;而NO2和PM10情況則基本一致,均呈現(xiàn)出兩個(gè)波峰和一個(gè)波谷的情況,具體的來(lái)看,NO2的兩個(gè)波峰分別出現(xiàn)在09:00和17:00左右,波谷則出現(xiàn)在13:00左右,而PM10的波峰和出現(xiàn)時(shí)間分別為08:00左右、18:00左右和14:00左右,總體上兩者每天濃度的波動(dòng)情況相似,這個(gè)結(jié)果與馬彬等對(duì)深圳市環(huán)境空氣的研究結(jié)果基本一致,只是在出現(xiàn)峰谷值的時(shí)段略有差異,環(huán)境空氣污染日變化趨勢(shì)不僅和人們的生產(chǎn)/生活等活動(dòng)有關(guān)而且還和每天的氣象變化存在一定的相關(guān)性,即早上08:00~09:00左右是上班的高峰期,而下午17:00~18:00是下班的高峰期,這兩個(gè)高峰期內(nèi)均顯示了較高濃度的NO2和PM10,而中午13:00~14:00以及凌晨和夜間均為休息時(shí)間,這一時(shí)段機(jī)動(dòng)車少,企業(yè)生產(chǎn)和排放的污染物也較少;而SO2的波峰則與不利氣象條件有關(guān),即08:00~12:00,是太陽(yáng)照射地面,地面溫度上升,空氣對(duì)流加強(qiáng),夜間形成的逆溫層遭到破壞,高空排放的二氧化硫向低層注入,而導(dǎo)致這一時(shí)段二氧化硫濃度峰值。
3.3 污染物的來(lái)源分析
為了考察北侖區(qū)域SO2,NO2、PM10三個(gè)污染因子的污染源情況,表1、表2、表3分別列出了這三個(gè)污染因子在不同點(diǎn)位的年均濃度、節(jié)假日濃度以及非節(jié)假日濃度情況,顯然除了城西點(diǎn)位的PM10外,三個(gè)點(diǎn)位各個(gè)污染因子之間的差別不大,這可能是由于北侖區(qū)域的污染主要來(lái)自于機(jī)動(dòng)車尾氣和大工業(yè)企業(yè)的污染物排放,機(jī)動(dòng)車本身的流動(dòng)性和大工業(yè)企業(yè)的高空排放都有利于污染物在北侖區(qū)域的快速擴(kuò)散,從而使得污染物濃度在三個(gè)點(diǎn)位基本分布均勻,而城西點(diǎn)位的PM10濃度偏高則可能是由于城西點(diǎn)位附近土地正處于開(kāi)發(fā)建設(shè)階段,由其導(dǎo)致的建筑施工揚(yáng)塵引起了局部的可吸入顆粒物濃度偏高。
為了進(jìn)一步的考察工業(yè)企業(yè)和機(jī)動(dòng)車對(duì)SO2、NO2、PM10三個(gè)污染因子的貢獻(xiàn)程度,對(duì)三個(gè)點(diǎn)位在節(jié)假日和非節(jié)假日的污染物濃度情況進(jìn)行了對(duì)比研究,顯然,三個(gè)污染因子在三個(gè)不同點(diǎn)位上均都顯示了非節(jié)假日濃度要高于節(jié)假日的趨勢(shì),由此可以看出,北侖區(qū)域的工業(yè)企業(yè)對(duì)于這三個(gè)污染物的濃度均存在一定程度的貢獻(xiàn),但是從比例的數(shù)據(jù)上來(lái)看,高出的濃度并不顯著,其中相差最大的是SO2的節(jié)假日/非節(jié)假日濃度比例,其節(jié)假日比非節(jié)假日濃度高20%~30%,這說(shuō)明工業(yè)企業(yè)對(duì)于污染物的貢獻(xiàn)并不是北侖區(qū)域SO2、NO2、PM10三個(gè)污染因子的主要來(lái)源,其對(duì)污染的貢獻(xiàn)是相對(duì)有限,更多的污染主要還是來(lái)自于北侖區(qū)域越來(lái)越多的機(jī)動(dòng)車所產(chǎn)生的尾氣,這個(gè)結(jié)果和王淑云等所提出的許多城市的機(jī)動(dòng)車尾氣是污染的次要因素不一致,此外,SO2企業(yè)貢獻(xiàn)比例相對(duì)較高可能與北侖區(qū)域的寧波鋼鐵廠、北侖電廠等大燃煤企業(yè)有關(guān),其燃煤產(chǎn)生的SO2對(duì)于區(qū)域SO2污染存在較大貢獻(xiàn)。
4. 結(jié)論與建議
北侖區(qū)的環(huán)境空氣質(zhì)量存在典型的季節(jié)性特征和日變化特征。受典型季節(jié)氣候的影響,存在典型的季節(jié)性污染物濃度變化,總體上表現(xiàn)為一、四季度污染嚴(yán)重,二、三季度空氣質(zhì)量較好;受日氣象條件變化和人們生產(chǎn)活動(dòng)的影響,SO2、NO2和PM10三個(gè)污染因子濃度在一天中分別表現(xiàn)為一個(gè)波峰,兩個(gè)波峰一個(gè)波谷和兩個(gè)波峰一個(gè)波谷的變化趨勢(shì)。
北侖區(qū)的污染物主要來(lái)自機(jī)動(dòng)車尾氣的排放,其次是區(qū)域內(nèi)大工業(yè)企業(yè)的排放主要表現(xiàn)為北侖電廠等大燃煤企業(yè)對(duì)SO2的貢獻(xiàn)。
通過(guò)對(duì)污染物來(lái)源的分析,建議進(jìn)一步加強(qiáng)做好以下幾個(gè)方面的工作:
(1)由于污染物的主要來(lái)源是機(jī)動(dòng)車尾氣的排放,故一方面需要倡議政府部門和公眾公車或私車的使用頻率,做到盡量坐公交車;而另一方面要加強(qiáng)機(jī)動(dòng)車的準(zhǔn)入制度,對(duì)于不符合國(guó)家相關(guān)排放標(biāo)準(zhǔn)的機(jī)動(dòng)車禁止使用,提倡低能耗、低排放的清潔車。
(2)要提高對(duì)于北侖區(qū)的三座環(huán)境空氣自動(dòng)站數(shù)據(jù)的反應(yīng)敏感性,尤其是城東和城西點(diǎn)位,要加強(qiáng)實(shí)時(shí)監(jiān)控,對(duì)于異常情況,及時(shí)通知監(jiān)察大隊(duì)和重大項(xiàng)目監(jiān)管科等相關(guān)科室,并對(duì)異常情況進(jìn)行實(shí)時(shí)跟蹤。
(3)除了常規(guī)的幾項(xiàng)污染因子外,作為一種監(jiān)控手段,有必要對(duì)一些周圍具有特征排放因子的污染物實(shí)行實(shí)時(shí)監(jiān)控。隨著城東和城西兩個(gè)自動(dòng)站在線色譜項(xiàng)目的開(kāi)展,這兩個(gè)環(huán)境空氣自動(dòng)站無(wú)疑會(huì)成為對(duì)周圍臺(tái)塑、化工碼頭、寧波鋼鐵等等產(chǎn)生有機(jī)物特征污染因子的企業(yè)異常情況監(jiān)控的排頭兵,通過(guò)這樣的一種監(jiān)控手段,結(jié)合北侖區(qū)環(huán)境監(jiān)測(cè)站的應(yīng)急監(jiān)測(cè)車和實(shí)驗(yàn)室分析,并與其它職能科室相配合,可以建立一套完整、可靠、有效的環(huán)境預(yù)警機(jī)制,這對(duì)于北侖區(qū)這樣一個(gè)臨港大工業(yè)基地是必要的也是必需的。
參考文獻(xiàn):
[1]郭二果,王成,彭鎮(zhèn)華,等,城市空氣懸浮顆粒物理化性質(zhì)及其健康效應(yīng)[J],生態(tài)環(huán)境,2008,17(2):851-857.
[2]黃虹,李順誠(chéng),曹軍冀,等,空氣污染暴露評(píng)價(jià)研究進(jìn)展[J],環(huán)境污染與防治,2005,27(2):118-121.
[3]車汶蔚,鄭君瑜,邵英賢,等,珠海市大氣污染時(shí)空分布特征及成因分析[J],中國(guó)環(huán)境監(jiān)測(cè),2008,24(5):82-87.
[4]張菊,苗紅,歐陽(yáng)志云,等,近20年北京市城近郊區(qū)環(huán)境空氣質(zhì)量變化及其影響因素分析[J],環(huán)境科學(xué)學(xué)報(bào),2006,26(11):1886-1992.
[5]陳晶,張禮俊,鐘流舉,珠江三角洲空氣質(zhì)量現(xiàn)狀及特征[J],廣東氣象,2008,30(4):15-17.
[6]王宏,林長(zhǎng)城,蔡義勇,等,福州市空氣質(zhì)量時(shí)空變化及其與天氣系統(tǒng)關(guān)系[J],氣象科技,2008,36(4):480-484.
[7]劉新玲,王曉明,李小明,2004-2008年山東中西部五城市大氣污染變化特征[J],科學(xué)技術(shù)與工程,2008,8(12):3390-3396.
[8]楊書申,邵龍義,楊園園,北京、上海兩地2004和2005年大氣污染特征對(duì)比分析[J],長(zhǎng)江流域資源與環(huán)境,2008,17(2):323-327.
[9]董葸青,謝宏斌,鄭鳳琴,2003廣西主要城市空氣質(zhì)量評(píng)價(jià)及空氣污染物濃度與氣象條件關(guān)系[J],廣西氣象,2004,25(1):36-39.
[10]馬彬,陳志誠(chéng),梁鴻,等,深圳市幾種空氣污染物濃度日變化特征分析[J],中國(guó)環(huán)境監(jiān)測(cè),2004,20(5):47-53.
【關(guān)鍵詞】大氣降水;離子組成;特征分析
以化石燃料燃燒為主的人類活動(dòng)向大氣中排放了大量氣態(tài)和固態(tài)污染物。雨水在凝結(jié)和下落過(guò)程中不斷吸收大氣中氣體和顆粒物, 所以大氣污染的程度及主要污染物排放量的變化情況可以在降水酸度及離子濃度中得到反映。
“十二五”以前,陜西省一直采取的都是以控制SO2排放為主要的大氣污染控制措施,對(duì)于遏制酸雨污染的進(jìn)一步變化起到了積極的作用。這些情況在降水酸度及離子濃度的變化中得到了充分的體現(xiàn)。
1 陜西省降水污染現(xiàn)狀
2012年,陜西省各監(jiān)測(cè)點(diǎn)共采集雨樣873個(gè),其中酸雨樣品(pH值
全省15個(gè)城市的降水各離子當(dāng)量占總當(dāng)量比例從大到小依次為:S042-> Ca2+ > NH4+ > NO3- >Mg2+>K+> Cl->Na+,表明,降水中的主要陽(yáng)離子為鈣和銨,分別占離子總當(dāng)量的29.4%和14.1%;主要陰離子為硫酸根,占離子總當(dāng)量的31.6%,硫酸鹽為陜西省降水中的最主要致酸物質(zhì);NO3-占離子總當(dāng)量的9.0%。
2 降水酸度及酸雨率的年際變化
2000~2012年,十余年間,pH年均值介于5.49~6.55,全省平均降水酸度略有波動(dòng),但呈逐年減弱趨勢(shì);酸雨頻率略有起伏,但呈逐年減小趨勢(shì),酸雨頻率介于0.2%~10.7%。
圖1 2000年~2012年陜西省降水pH值和酸雨發(fā)生頻率變化趨勢(shì)
3 降水中主要離子比例及原因分析
3.1 S042-/NO3-
S042-、NO3-是影響大氣酸度的重要成份, 2006~2012年陜西省降水中S042-/NO3-值見(jiàn)表1。由表1中可知S042-/NO3-的比值2007年最高,為7.6,之后呈下降趨勢(shì),2011年酸雨類型變?yōu)榛旌闲停?012年較2011年又略有升高,重回硫酸型時(shí)代。
2006年以來(lái),全國(guó)上下加強(qiáng)了SO2減排工作,陜西省相繼制定了促進(jìn)節(jié)能減排的一系列政策措施,SO2減排工作取得了積極進(jìn)展。從2007年開(kāi)始,全省SO2排放量和城市環(huán)境空氣中SO2平均濃度逐年下降, 城鄉(xiāng)環(huán)境質(zhì)量不斷改善。NOX從“十二五”納入減排工作,因?yàn)槊喝紵欧臢OX一直占NOX排放總量的70%以上 ,所以陜西省從2011年開(kāi)始全力推進(jìn)燃煤電廠脫硝工作。降水S042-/NO3-的比值2012年較2011年又略有升高,與2011年部署的NOX減排項(xiàng)目,在2012年的發(fā)揮效果有很大關(guān)系。
表1 降水酸度及主要離子組成比例
年份 2006年 2007年 2008年 2009年 2010年 2011年 2012年
S042-/NO3- 5.9 7.62 6.95 5.81 4.25 2.75 3.51
空氣中SO2平均濃度(mg/m3) 0.040 0.049 0.044 0.042 0.039 0.036 0.032
SO2排放量較上年
變化情況 增加 減少 減少 減少 減少 減少 減少
空氣中NO2平均濃度(mg/m3) 0.031 0.031 0.030 0.031 0.033 0.032 0.031
NOX排放量較上年
變化情況 -- 持平 增加 增加 增加 增加 減少
pH年均值 6.07 5.71 6.34 6.35 6.55 6.20 6.47
Ca2++NH4+/SO42- +NO3- 0.67 0.75 0.73 0.65 0.73 0.83 0.97
3.2 (Ca2++NH4+)/(SO42- +NO3-)
陜西省降水的主要致酸因子是SO42-和NO3-,主要致堿因子是Ca2+和NH4+;(Ca2++NH4+)/(SO42- +NO3-)的比值可以作為判斷降水酸化程度的一個(gè)依據(jù),比值的增加表明降水酸度的減小,pH增加, 反之pH則降低。由表1可知,陜西省2006~2012年(Ca2++NH4+)/(SO42- +NO3-)比值呈波動(dòng)變大趨勢(shì),說(shuō)明陜西省降水的酸化程度正逐步向好,與降水年均pH值反應(yīng)出的情況基本一致。
4 結(jié)語(yǔ)
(1) 陜西省2006~2012年降水pH均值較高,波動(dòng)不大,表明陜西省酸雨污染較輕;
(2) S042-/NO3比值顯示陜西省酸雨類型有從硫酸型轉(zhuǎn)變成硫酸和硝酸混合型的趨勢(shì);
(3) Ca2+、NH4+、SO42- 、NO3-這四項(xiàng)離子是影響陜西省降水酸度的主要因子;
(4) 主要污染物減排工作對(duì)酸雨控制有積極推動(dòng)作用。
參考文獻(xiàn):
[1]程新金,黃美元.降水化學(xué)特性的一種分類分析方法[J]。氣候與環(huán)境研究,1998.
[2]楊龍譽(yù)、黃麗、孫燕等,常州市2007年降水酸度及離子含量特征[J]。環(huán)境化學(xué),2009.
[3]王虹,馬鞍山市降水酸度的時(shí)空變化特征及其成因初探[J]。安徽師范大學(xué)學(xué)報(bào),2004.
[4]田賀忠,郝吉明,陸永琪,等.中國(guó)氮氧化物排放清單及分布特征[J]. 中國(guó)環(huán)境科學(xué), 2011.
作者簡(jiǎn)介:
薛四社(出生于1972年-)、男、漢族、陜西長(zhǎng)安人、現(xiàn)為陜西省環(huán)境監(jiān)測(cè)中心站、工程師,主要從事環(huán)境質(zhì)量分析研究。
劉勇(出生于1974年-)、男、漢族、陜西西安人、現(xiàn)為陜西省環(huán)境監(jiān)測(cè)中心站、工程師,主要從事環(huán)境質(zhì)量分析研究。
關(guān)鍵詞:機(jī)動(dòng)車污染;排放總量;特征;削減量分配
DOI:10.16640/ki.37-1222/t.2016.14.253
我國(guó)目前大氣環(huán)境所面臨的主要威脅來(lái)自霧霾天氣,尤其是在京津冀、珠三角和東北地區(qū)最為嚴(yán)重,由于區(qū)域經(jīng)濟(jì)一體化進(jìn)程不斷加快,在大氣流動(dòng)性的影響下,對(duì)大氣污染治理已經(jīng)從單一片區(qū)擴(kuò)散到區(qū)域,因此,亟需對(duì)區(qū)域大氣污染物進(jìn)行總量控制,并以削減量分配為原則,對(duì)區(qū)域機(jī)動(dòng)車排放的污染物進(jìn)行嚴(yán)格控制。
1 機(jī)動(dòng)車污染物現(xiàn)狀分析
隨著城市經(jīng)濟(jì)不斷增長(zhǎng),我國(guó)機(jī)動(dòng)車保有量呈幾何狀態(tài)激增,截止2015年,全國(guó)機(jī)動(dòng)車保有量同比增長(zhǎng)8.4%,因此機(jī)動(dòng)車排放污染已成為我國(guó)大氣污染的主要因素,也是導(dǎo)致光化學(xué)煙霧和灰霾的關(guān)鍵因素,防治機(jī)動(dòng)車污染的任務(wù)越來(lái)越緊迫。目前有學(xué)者研究表明,我國(guó)大部分人口密集區(qū)域大氣中的存在的氮氧化物主要來(lái)自于機(jī)動(dòng)車排放的尾氣,我國(guó)機(jī)動(dòng)車所排放的NOx約占全國(guó)排放總量的30%,僅次于火電廠污染,汽車尾氣排放的含氮物質(zhì)對(duì)環(huán)境造成的威脅日益凸顯。此外,機(jī)動(dòng)車污染物中含有CO、HC、NOx、SO2以及可吸入顆粒物等成分,存在很大的毒性,有些物質(zhì)還可能通過(guò)相互作用導(dǎo)致二次污染,城市居民長(zhǎng)期處于被污染的大氣環(huán)境下,會(huì)導(dǎo)致哮喘、呼吸疾病以及心臟病的發(fā)病率增加,對(duì)生命安全和生活質(zhì)量造成嚴(yán)重威脅,因此采取有效措施對(duì)污染物總量進(jìn)行削減勢(shì)在必行。
2 區(qū)域機(jī)動(dòng)車污染物總量排放特征
2.1 大氣污染物排放總量清單
以我國(guó)東北地區(qū)為例,截止2015年該區(qū)域大氣污染排放總量主要包括CO、HC、NOx、PM10,其中CO排放總量最高,為278.34萬(wàn)噸。NOx次之,為83.45萬(wàn)噸,HC為69.31萬(wàn)噸,PM10為5.31萬(wàn)噸。
2.2 機(jī)動(dòng)車不同車型污染物排放特征
不同車型的機(jī)動(dòng)車對(duì)污染物排放總量的影響存在較高的敏感性。東北地區(qū)污染物排放的主要源頭為輕型貨車、輕型客車以及摩托車,排放比例分別為15.31%、38.24%、19.46%,占到排放總量的80%以上。東北地區(qū)2015年各類客車的保有量為587.34萬(wàn)輛,其次是摩托車,約為534.13萬(wàn)輛,這兩類機(jī)動(dòng)車污染物排放較多,而從國(guó)家規(guī)定的排放標(biāo)準(zhǔn)中分析,由于東北地區(qū)從2008年開(kāi)始即采取了機(jī)動(dòng)車限行措施,因此客車排放量較低,而摩托車排放量則高于輕型客車。
2.3 時(shí)間和空間維度上的排放特征
從時(shí)間維度和空間維度上分析,首先,東北地區(qū)機(jī)動(dòng)車污染物排放量呈逐年遞增,以2015年達(dá)到頂峰,且排放特征以“多點(diǎn)開(kāi)花”的形式特征為主,在沈陽(yáng)、長(zhǎng)春等經(jīng)濟(jì)重心城市,CO、HC排放量年增長(zhǎng)比率超過(guò)14.%,污染物排放總量觸目驚心;其次,東北地區(qū)機(jī)動(dòng)車污染物控制情況并不理想,從年同比增長(zhǎng)率來(lái)看,從2013年~2015年雖然總量增長(zhǎng)速度放緩,但四種污染物的區(qū)域分擔(dān)率仍然超過(guò)了50%;最后,排放特征與城市地理環(huán)境和人為因素息息相關(guān),城市規(guī)劃過(guò)程中未將節(jié)能減排工作進(jìn)行著重考慮,導(dǎo)致東北地區(qū)機(jī)動(dòng)車污染物排放呈現(xiàn)擴(kuò)散、巨量的特征,且短時(shí)間內(nèi)難以控制,因此,對(duì)污染物排放總量進(jìn)行削減是改善區(qū)域大氣環(huán)境的必然措施。
3 區(qū)域機(jī)動(dòng)車污染物削減量分配
以2015年四種機(jī)動(dòng)車污染物排放總量進(jìn)行削減量越策,按照等比例分配方法進(jìn)行分配,在對(duì)指標(biāo)體系進(jìn)行權(quán)重計(jì)算的基礎(chǔ)上運(yùn)用熵值法進(jìn)行計(jì)算,首先對(duì)排放指標(biāo)進(jìn)行標(biāo)準(zhǔn)化處理,包括區(qū)域GDP總值以及人均GDP和全年空氣質(zhì)量大于2級(jí)的天數(shù),設(shè)人均GDP和機(jī)動(dòng)車污染物排放強(qiáng)度為相對(duì)于削減排放量的正向指標(biāo),設(shè)控制質(zhì)量為副項(xiàng)指標(biāo),計(jì)算出信息效用值后進(jìn)行指標(biāo)權(quán)重確定。
在等比例分配方法的基礎(chǔ)上,區(qū)域機(jī)動(dòng)車污染物排放總量削減公式如下:
式中:Xi表示區(qū)域目標(biāo)削減率,表示參與總量分配地區(qū)的平均削減率,ai為區(qū)域相對(duì)削減因子,Qi表示區(qū)域基期污染物排放量,C為區(qū)域總目標(biāo)削減率,j表示第j個(gè)指標(biāo)數(shù),fij表示區(qū)域第j個(gè)指標(biāo)的歸一化計(jì)算所得數(shù)值,ωj表示第j個(gè)指標(biāo)的權(quán)重值。
按照熵值法進(jìn)行處理后,可得出各污染物的指標(biāo)權(quán)重,按上述公式可在排放清單的基礎(chǔ)上得出削減量,并進(jìn)行分配。根據(jù)東北地區(qū)2015年機(jī)動(dòng)車污染物排放清單預(yù)測(cè)結(jié)果,在10%的排放目標(biāo)要求下,①CO排放總量削減率為70.1%,即區(qū)域主要城市需承擔(dān)區(qū)域70.1%的CO減排總量;②NOx排放總量削減率為64.5%,對(duì)城市地理因素進(jìn)行綜合考慮,東北地區(qū)沈陽(yáng)削減率為54.8%,吉林為29.7%,長(zhǎng)春為13.2%,即吉林和長(zhǎng)春對(duì)于東北區(qū)域的NOx排放總量貢獻(xiàn)率當(dāng)中的一部分被空氣環(huán)境因素和經(jīng)濟(jì)發(fā)展因素轉(zhuǎn)移到沈陽(yáng)市,但整個(gè)區(qū)域仍需承擔(dān)最大的削減率;③HC污染物主要源自于摩托車尾氣,但沈陽(yáng)、吉林、長(zhǎng)春摩托車保有量近年來(lái)逐漸下降,因此,削減率可根據(jù)城市排放標(biāo)準(zhǔn)實(shí)際清單進(jìn)行計(jì)算,若摩托車保有量年統(tǒng)計(jì)在300萬(wàn)輛以下,則削減率則控制在35%左右;④從區(qū)域分擔(dān)率和削減率比值來(lái)看,PM排放總量受其影響較小,東北地區(qū)主要城市可承擔(dān)80%以上的削減量。
經(jīng)濟(jì)與科技的發(fā)展使大眾的生活方式與以往大相徑庭。雖然日子越過(guò)越好,但亦派生出不少有害健康的各種疾病,過(guò)敏則是其中之一。為什么過(guò)敏的人越來(lái)越多呢?
大氣受到污染帶來(lái)的禍害
大氣污染是引起哮喘等過(guò)敏性疾病的重要因素。大氣污染物的主要成分是高濃度二氧化氮、臭氧、各種懸浮物質(zhì)的大量微粒等。這些多由汽、柴油發(fā)動(dòng)機(jī)產(chǎn)生,它們可使一些空氣中的花粉等懸浮物表面蛋白質(zhì)結(jié)構(gòu)發(fā)生變異,成為較強(qiáng)的過(guò)敏原。日本和德國(guó)研究證實(shí),被城市空氣污染的杉樹(shù)花粉致敏強(qiáng)度比未被污染的杉樹(shù)花粉高幾百倍。
隨著現(xiàn)代化的進(jìn)程,各種機(jī)動(dòng)車輛排放的廢氣,使大氣污染日見(jiàn)嚴(yán)重。因此,居住在交通擁擠的城市和交通繁忙的公路旁,無(wú)論是成人還是兒童,過(guò)敏性疾病發(fā)病率都顯著高于鄉(xiāng)村。
研究還表明,空氣中的亞硫酸和氮?dú)饬蚧锏扔泻ξ镔|(zhì)易使過(guò)敏原侵入人體,引起哮喘和花粉癥患者的氣道炎癥,導(dǎo)致癥狀加重。
生活方式改變派生的弊病
室內(nèi)裝修,空氣流通不暢
家庭、辦公室和各種室內(nèi)活動(dòng)場(chǎng)所多有供暖設(shè)施、窗簾、地毯,裝修嚴(yán)實(shí),空氣流通不暢,這為室內(nèi)塵螨等過(guò)敏原的蓄積提供了條件,使室內(nèi)空氣污染比室外還嚴(yán)重。
現(xiàn)代化家庭電器設(shè)施增多
空調(diào)、冰箱、電視、電腦、微波爐等各種電器設(shè)備產(chǎn)生的電磁輻射,亦會(huì)導(dǎo)致過(guò)敏。
對(duì)以上三點(diǎn)原因,還要補(bǔ)充的是:現(xiàn)在,許多人呆在室內(nèi)的時(shí)間超過(guò)80%,老人和小孩在室內(nèi)時(shí)間更長(zhǎng),高達(dá)90%以上。由于室內(nèi)污染嚴(yán)重,他們發(fā)生過(guò)敏疾病的機(jī)會(huì)更多,尤其是兒童過(guò)敏患者明顯增加。
室內(nèi)現(xiàn)代生活帶來(lái)了有毒有害的物質(zhì)
煤氣灶、吸煙、寵物、噴霧劑、裝修等用到的各種膠及材料,隨時(shí)都能揮發(fā)出有毒有害物質(zhì),如甲醛、氨、苯以及各種過(guò)敏原和刺激物的混合物,從而導(dǎo)致了過(guò)敏癥的迅速增加。
各種化學(xué)制品充斥著人們的生活
如化纖類衣物、洗滌劑、化妝品、消毒劑、農(nóng)藥、化肥、塑料等類,易導(dǎo)致過(guò)敏的各類化學(xué)制品頻繁與人發(fā)生接觸,特別易導(dǎo)致瘙癢、皮炎、濕疹等,使皮膚過(guò)敏性疾病發(fā)病率提高。
醫(yī)學(xué)發(fā)展改變了疾病譜,免疫系統(tǒng)失衡
醫(yī)用消毒劑和預(yù)防藥物的大量應(yīng)用,寄生蟲感染和某些傳染病減少,改變了人類的疾病譜,使得原先用來(lái)防御寄生蟲、細(xì)菌和病毒感染的免疫系統(tǒng)失去了平衡,不僅作戰(zhàn)能力降低,而且很難分清“敵我”,即使接觸無(wú)害物質(zhì),也奮起抵抗,引起過(guò)敏反應(yīng)。
新的過(guò)敏原層出不窮
食品中的各類添加劑、香料、各種高科技合成物質(zhì)等,也讓人體免疫系統(tǒng)無(wú)法辨認(rèn)“敵我”,出現(xiàn)各種過(guò)敏。
對(duì)藥物的依賴性和濫用抗生素
人們十分注重健康,身體有不適,就去看醫(yī)生,無(wú)論大小病,吃藥才放心,對(duì)藥物越來(lái)越依賴。在科技迅速發(fā)展的時(shí)代,各類新藥層出不窮,為保障人體健康提供了越來(lái)越多的有利條件。但同時(shí),由于用藥種類和劑量不斷攀升,甚至濫用藥物,帶來(lái)許多弊病。如長(zhǎng)期應(yīng)用抗生素,不僅導(dǎo)致大量耐藥菌株,還導(dǎo)致腸道內(nèi)菌群失調(diào),使人體內(nèi)有益桿菌驟減,一些具有抗過(guò)敏作用的細(xì)胞因子如干擾素等產(chǎn)生能力降低,導(dǎo)致機(jī)體抗過(guò)敏能力下降。這樣,發(fā)生過(guò)敏性疾病的機(jī)率必然增加。
精神緊張,心理壓力過(guò)大
因經(jīng)濟(jì)社會(huì)各個(gè)領(lǐng)域競(jìng)爭(zhēng)激烈,生活節(jié)奏變快,人們常常處于緊張狀態(tài),心理壓力過(guò)大,睡眠質(zhì)量差,導(dǎo)致機(jī)體免疫功能下降,易產(chǎn)生過(guò)敏性疾病。
飲食結(jié)構(gòu)和飲食習(xí)慣的改變
以往五谷雜糧,粗茶淡飯,一日三餐,營(yíng)養(yǎng)均衡,難得過(guò)敏物質(zhì)。現(xiàn)在飲食不僅花樣多,而且想吃隨便吃,除了餐桌上有雞鴨、肉蛋、魚蝦和山珍海味等食品外,還常常吃一些含有各種添加劑的零食,這些食品中許多都屬過(guò)敏物質(zhì),當(dāng)然易引發(fā)過(guò)敏性疾病。
總之,過(guò)敏雖有遺傳傾向,但基因改變需幾代人的漫長(zhǎng)時(shí)間,顯而易見(jiàn),過(guò)敏性疾病發(fā)病率急劇上升并非基因問(wèn)題,而是生存環(huán)境逐漸惡化、大氣污染、生活方式改變、寄生蟲感染及兒童期傳染病減少、家庭生活條件的極大改善等主要因素所致。值得注意的是,這對(duì)兒童(尤其是嬰幼兒)危害最大。
兒童是過(guò)敏性疾病高發(fā)人群
兒童的身體正在生長(zhǎng)發(fā)育中,各個(gè)組織機(jī)能發(fā)育都不完全,免疫系統(tǒng)很脆弱,對(duì)各種疾病的防御能力很低。因此,兒童是過(guò)敏性疾病發(fā)病的高危人群。過(guò)敏反應(yīng)會(huì)在多個(gè)組織器官同時(shí)或相繼發(fā)生。不同的年齡,可以發(fā)生不同的過(guò)敏反應(yīng)。如新生兒、嬰兒期可以出現(xiàn)濕疹、喘息性支氣管炎,或因牛奶過(guò)敏而出現(xiàn)反復(fù)腹瀉;三歲后會(huì)發(fā)生過(guò)敏性咳嗽、過(guò)敏性哮喘、過(guò)敏性鼻炎;學(xué)齡前后則又會(huì)出現(xiàn)過(guò)敏性紫癜。尤其是有過(guò)敏性疾病家族史的兒童,發(fā)生過(guò)敏性疾病時(shí)癥狀較重,治療更困難。
然而,有些父母往往對(duì)孩子輕微的過(guò)敏癥狀抱無(wú)所謂態(tài)度,以為是“小毛病”,這為孩子的健康留下禍根。世界衛(wèi)生組織對(duì)過(guò)敏性疾病提出了預(yù)防治療、防止復(fù)發(fā)的指導(dǎo)原則。對(duì)兒童過(guò)敏性疾病的預(yù)治,除了成人所要采取的一系列措施外,還要采取一些特殊的措施。例如:
堅(jiān)持母乳喂養(yǎng)至少6個(gè)月
母乳喂養(yǎng)是人生的第一次免疫,因母乳中含有大量的免疫物質(zhì),能增加?jì)雰簷C(jī)體免疫力,防御病毒的侵入和過(guò)敏性疾病,做母親的不要因工作或其他原因提前斷奶,錯(cuò)過(guò)給寶寶母乳喂養(yǎng)的良機(jī)。
有過(guò)敏病史的產(chǎn)婦,產(chǎn)后要預(yù)防食品等物質(zhì)過(guò)敏
研究發(fā)現(xiàn),哺乳期間是否控制飲食,防止過(guò)敏,對(duì)寶寶日后發(fā)生過(guò)敏反應(yīng)的幾率相差一倍。
家庭不要過(guò)度使用抗菌消與苛求飲食的絕對(duì)潔凈
因?yàn)椋梭w免疫系統(tǒng)會(huì)對(duì)某些過(guò)敏原形成免疫記憶,有些孩子接觸過(guò)敏原后會(huì)產(chǎn)生抗體,若再次遇上該過(guò)敏原,能很快將其消滅。若家中過(guò)于無(wú)菌和潔凈,孩子沒(méi)有機(jī)會(huì)獲得抗體,抵抗力反而減弱,會(huì)導(dǎo)致過(guò)敏和自身免疫失調(diào)。
經(jīng)常給嬰幼兒撫觸或按摩
這可以改善寶寶的血液循環(huán),增進(jìn)食物的消化與吸收,減少哭鬧,改善睡眠,增強(qiáng)免疫力,從而提高對(duì)過(guò)敏原的防御功能。
及時(shí)給孩子喝開(kāi)水
寶寶體內(nèi)水分充足,能保持黏膜濕潤(rùn),成為抵擋病原體的防線。因此,嬰幼兒或是大些的孩子,無(wú)論是在家或外出,都不能渴著,要多喝白開(kāi)水,而不是各種含糖飲料。
盡量減少室內(nèi)過(guò)敏原
關(guān)鍵詞:大氣污染;交通尾氣;污染控制
隨著銅陵市大力開(kāi)展環(huán)境綜合整治,煤煙型復(fù)合污染正逐步減輕。但由于城市發(fā)展,機(jī)動(dòng)車擁有量不斷增加,交通尾氣污染呈上升趨勢(shì),雖不造成大氣環(huán)境污染的首要因素,但對(duì)城市環(huán)境保護(hù)存在潛在壓力。機(jī)動(dòng)車大規(guī)模普及改變?nèi)藗兩罘绞?但在給人類生活帶來(lái)便利的同時(shí),危害市民身體健康,能有效地控制交通尾氣污染,改善城市環(huán)境質(zhì)量,成為繼工業(yè)污染防治后新的課題。
1、機(jī)動(dòng)車保有量及交通狀況分析
2007年底銅陵市機(jī)動(dòng)車保有量5.96萬(wàn)輛,機(jī)動(dòng)車保有量年均增長(zhǎng)率在10%左右。由于特殊的地形條件和前期規(guī)劃缺乏前瞻性,造成老城區(qū)路面狹窄,坡度大,內(nèi)道路曲折,彎道半徑小。銅陵市政府為緩解交通堵塞現(xiàn)象,加大了對(duì)主城區(qū)主干道的改造,加強(qiáng)城市新路網(wǎng)建設(shè),實(shí)現(xiàn)交通公路建設(shè)跨越式發(fā)展的目標(biāo),到“十一五”末,全市公路總里程達(dá)到1000公里以上,新增公路總里程400公里,形成市中心到各鄉(xiāng)鎮(zhèn)的“半小時(shí)交通圈”。
2、交通尾氣污染的危害
交通尾氣成分復(fù)雜,主要包括CO、HC、NO2、SO、Pb、苯并芘、烷基鉛和固體顆粒物等。汽車尾氣污染主要在交通干線等人口密集地區(qū),其排放高度接近人體的呼吸帶,對(duì)人體健康造成嚴(yán)重危害。其中,HC與NO2在強(qiáng)陽(yáng)光作用下,在不利擴(kuò)散氣象和地理?xiàng)l件,可形成光化學(xué)煙霧,造成嚴(yán)重的二次污染。通過(guò)對(duì)公路兩側(cè)范圍進(jìn)行監(jiān)測(cè)表明,有50%的鉛落在公路兩側(cè)數(shù)百米范圍內(nèi)。人體經(jīng)過(guò)飲食,通過(guò)食物鏈進(jìn)入消化道的鉛有5%~10%被吸收,通過(guò)呼吸道吸入肺部的鉛,吸收沉積率高達(dá)30%~50%。
3、影響交通尾氣污染因素
3.1 區(qū)域污染氣象特征
銅陵市位于安徽省中南部,年平均氣溫為16.2℃,年平均風(fēng)速2.5m/s,全年大氣穩(wěn)定度以中性天氣為主,逆溫層出現(xiàn)頻率高且厚,大氣擴(kuò)散條件較差。城區(qū)三面環(huán)山,中間低的地貌結(jié)構(gòu)有利于山谷風(fēng)環(huán)流形成,夜間山地氣壓較城區(qū)高,山地下泄冷空氣沿地形傾斜面吹向市區(qū),冷空氣將城區(qū)暖空氣抬升,形成高度較低的接地逆溫層,高度范圍0~300m,平均厚度123m,出現(xiàn)頻率達(dá)60%以上,逆溫層抑制了下層氣流運(yùn)動(dòng),多微風(fēng)和靜風(fēng),極不利于城區(qū)大氣污染擴(kuò)散,從而城區(qū)形成大氣污染高濃度中心。
3.2 城市交通道路規(guī)劃
城市規(guī)劃是一個(gè)綜合各學(xué)科的復(fù)雜過(guò)程,城市功能的規(guī)劃、城市各區(qū)域功能的規(guī)劃、城市道路規(guī)劃與綠化的合理性,對(duì)城市大氣環(huán)境有非常重要的影響。隨著銅陵市社會(huì)經(jīng)濟(jì)快速發(fā)展,城市原有規(guī)劃落后于社會(huì)經(jīng)濟(jì)發(fā)展需要。
銅陵市由于受地形地貌與地質(zhì)的限制,城市交通道路發(fā)展一直在充分利用地形地貌修建起來(lái)的,因而呈現(xiàn)目前城市道路多彎曲狹窄,導(dǎo)致交通擁塞,車輛的怠慢行駛,燃油燃燒不充分,污染物質(zhì)的大量排放。此外街道空氣的流動(dòng)性差,污染物質(zhì)在街道的累積,不利于交通尾氣沿道路向郊區(qū)的輸送,如何把城市的交通道路的規(guī)劃建設(shè)與城市環(huán)境保護(hù)結(jié)合起來(lái)是一個(gè)新的課題。
4、交通尾氣污染影響分析
氮氧化物作為機(jī)動(dòng)車尾氣特征污染因子,表明機(jī)動(dòng)車尾氣排放目前還不是造成銅陵市大氣環(huán)境污染的首要因素,但隨銅陵市政府加大工業(yè)污染力度后,機(jī)動(dòng)車尾氣污染日益明顯。據(jù)報(bào)道機(jī)動(dòng)車排放已經(jīng)成為一些全國(guó)環(huán)保重點(diǎn)城市的重要空氣污染源,廣州、北京、上海、沈陽(yáng)等大城市交通污染已經(jīng)是城市大氣環(huán)境的主要污染源。
銅陵市建筑密度大,造成地面的粗糙度高,不利于氣流的流動(dòng),阻礙城市大氣污染物質(zhì)的擴(kuò)散。處于亞熱帶濕潤(rùn)季風(fēng)氣候區(qū),風(fēng)速小,逆溫頻率高,氣象和地理?xiàng)l件均不利于機(jī)動(dòng)車尾氣污染物的擴(kuò)散。現(xiàn)有路段由于狹窄、坡度大、彎道半徑小等原因,易造成車輛堵塞、車速低、怠速率增加,造成機(jī)動(dòng)車尾氣排放量增加。由于交通尾氣為貼地排放,大氣擴(kuò)散能力相對(duì)弱,更不利于交通尾氣的擴(kuò)散。
5、交通尾氣污染的減緩措施
影響城市交通污染因素復(fù)雜,常非單一作用。根據(jù)交通尾氣環(huán)境污染特點(diǎn),結(jié)合地形地貌與氣候特征出發(fā),從汽車保有量、能源結(jié)構(gòu)、環(huán)境保護(hù)、城市建設(shè)和機(jī)動(dòng)車產(chǎn)業(yè)發(fā)展等方面入手,統(tǒng)籌兼顧使用清潔的燃料、清潔的車輛技術(shù)、完善的車輛維護(hù),以及可持續(xù)的城市道路系統(tǒng)建設(shè),完善的交通、環(huán)境管理措施解決機(jī)動(dòng)車尾氣污染問(wèn)題,探索符合銅陵市特點(diǎn)的交通尾氣污染控制體系。
(1)控制城市汽車保有量。積極采取措施,控制城市汽車保有量,尤其是私家車保有量,大力發(fā)展與鼓勵(lì)使用公共交通,實(shí)施公交優(yōu)先的城市交通發(fā)展戰(zhàn)略。銅陵市由于土地資源相對(duì)緊張,人均建筑面積較小,沒(méi)有足夠的土地資源修建停車場(chǎng)。此外由于自然地質(zhì)地貌的影響以及歷史的原因。原有規(guī)劃缺乏前瞻性,道路路面狹窄,高樓大廈多,這給銅陵市的路面拓寬與改造形成極大障礙,如果城市汽車擁有量過(guò)大,城市擴(kuò)張受地域限制,交通擁擠堵塞不可避免,城市的交通系統(tǒng)將難以正常的有效運(yùn)轉(zhuǎn)。
(2)推行清潔能源技術(shù)(AFV)。鼓勵(lì)使用清潔高效交通工具,發(fā)展清潔燃料車和公共交通系統(tǒng)。燃油有效完全燃燒,與燃燒系統(tǒng)、空燃比、還與高品質(zhì)燃料有關(guān),采用清潔能源技術(shù)實(shí)現(xiàn)汽車燃料替代。實(shí)施高效、低污燃料替代戰(zhàn)略,實(shí)現(xiàn)清潔能源技術(shù),鼓勵(lì)“零”排放的電動(dòng)汽車和電動(dòng)摩托車,普及天然氣燃料。
(3)突出城區(qū)交通道路規(guī)劃前瞻性。把城區(qū)交通尾氣污染等環(huán)境問(wèn)題納入城市發(fā)展規(guī)劃與舊城區(qū)改造建設(shè)之中,適當(dāng)降低坡度,改彎取直,利用地形差建立城市立交橋,保證車流暢通。在城市新區(qū)開(kāi)發(fā)規(guī)劃中,把道路的交通流量及汽車尾氣的輸送擴(kuò)散納入道路規(guī)劃中進(jìn)行綜合考慮。交通道路體系規(guī)劃中,在保證與城市整體規(guī)劃相容的前提下,盡可能使新建主干道走向與城市主導(dǎo)風(fēng)向一致,增強(qiáng)交通尾氣輸送擴(kuò)散能力。統(tǒng)籌城區(qū)交通道路建設(shè),建立可持續(xù)的城市道路系統(tǒng)。
(4)完善道路交通管理系統(tǒng)。城市交通管理是城市交通運(yùn)輸?shù)拇竽X,交通秩序的科學(xué)管理與區(qū)域車流量的適時(shí)調(diào)配非常重要,完善道路交通管理系統(tǒng)可以提高城市交通狀況,改善汽車運(yùn)行狀況,減少車輛的怠速時(shí)間,減少城市交通污染的。適度超前的城市交通管理系統(tǒng)的建設(shè)有助于城市未來(lái)的交通問(wèn)題的解決,建設(shè)和使用銅陵市的信息化、智能化交通管理系統(tǒng),成為改善銅陵市交通問(wèn)題的必然之路。同時(shí)大力發(fā)展公共交通系統(tǒng),提高公共交通系統(tǒng)的使用率,降低汽車的空座率,提高車輛的利用效率,完善道路交通管理系統(tǒng),控制交通污染。
關(guān)鍵詞:PM2.5濃度預(yù)測(cè);綜合氣象指數(shù);特征向量;相關(guān)性分析;最小二乘支持向量機(jī)
中圖分類號(hào): TP391.4; TP18
文獻(xiàn)標(biāo)志碼:A
Abstract: To solve the problem of Fine Particulate Matter (PM2.5) concentration prediction, a PM2.5 concentration prediction model was proposed. First, through introducing the comprehensive meteorological index, the factors of wind, humidity, temperature were comprehensively considered; then the feature vector was conducted by combining the actual concentration of SO2, NO2, CO and PM10; finally the Least Squares Support Vector Machine (LSSVM) prediction model was built based on feature vector and PM2.5 concentration data. The experimental results using the data from the city A and city B environmental monitoring centers in 2013 show that, the forecast accuracy is improved after the introduction of a comprehensive weather index, error is reduced by nearly 30%. The proposed model can more accurately predict the PM2.5 concentration and it has a high generalization ability. Furthermore, the author analyzed the relationship between PM2.5 concentration and the rate of hospitalization, hospital outpatient service amount, and found a high correlation between them.
Key words: Fine Particulate Matter (PM2.5) concentration prediction; comprehensive meteorological index; feature vector; correlation analysis; Least Squares Support Vector Machine (LSSVM)
0引言
細(xì)顆粒物(Fine Particulate Matter, PM2.5)是指大氣中空氣動(dòng)力學(xué)當(dāng)量直徑小于等于2.5μm的顆粒物,其數(shù)值越高,代表顆粒物濃度越高,意味著空氣污染越嚴(yán)重。雖然PM2.5只是地球大氣成分中含量很少的組成部分,但是它對(duì)空氣質(zhì)量和能見(jiàn)度等指標(biāo)有重要影響。近期,我國(guó)多地出現(xiàn)霧霾天氣,嚴(yán)重影響了人們的生活。二氧化硫、氮氧化物和PM2.5是霧霾的主要構(gòu)成物質(zhì),PM2.5是其中加重霧霾污染天氣的罪魁禍?zhǔn)祝蔀榱擞绊懭藗冋I畹闹匾笜?biāo),因此準(zhǔn)確預(yù)測(cè)PM2.5的濃度(濃度量綱為μg/m3,后文中提及的濃度均以此單位計(jì))變得越來(lái)越重要。
影響PM2.5濃度的因素包括空氣中二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)、可吸入顆粒物(PM10)含量、臭氧(O3)和氣象因素等。預(yù)測(cè)PM2.5濃度值變化規(guī)律對(duì)未來(lái)空氣質(zhì)量監(jiān)測(cè)有重要意義。
預(yù)測(cè)PM2.5的濃度,最重要的是分析各個(gè)影響因素與PM2.5之間的復(fù)雜關(guān)系。近年來(lái),專家學(xué)者開(kāi)展了一些相關(guān)的研究工作。秦俠等[1]提出了一種基于人工神經(jīng)網(wǎng)絡(luò)的方法預(yù)測(cè)大氣污染物濃度;陳柳等[2]提出了一種基于支持向量機(jī)(Support Vector Machine, SVM)和時(shí)間序列的大氣污染濃度預(yù)測(cè)模型;蘇靜芝等[3]提出了一種加入氣象因素的人工神經(jīng)網(wǎng)絡(luò)的大氣污染物濃度預(yù)測(cè)模型;陳俏等[4]提出了一種基于支持向量機(jī)和回歸法的大氣污染物濃度預(yù)測(cè)模型;魏振鋼等[5]提出一種基于高斯模型的大氣污染物濃度預(yù)測(cè)模型;王燕等[6]提出一種基于箱模型的大氣污染物濃度預(yù)測(cè)模型。
這些文獻(xiàn)通過(guò)研究個(gè)別因素對(duì)大氣污染物濃度的影響提出了預(yù)測(cè)方法,但是氣象因素對(duì)于PM2.5的影響是十分復(fù)雜的,實(shí)際情況中往往是不同氣象因素相互影響的結(jié)果。如果分別考慮各個(gè)因素,則不能很好地體現(xiàn)多個(gè)因素相互作用對(duì)PM2.5濃度產(chǎn)生的耦合效應(yīng),也就不能準(zhǔn)確建立預(yù)測(cè)PM2.5濃度的模型。
本文旨在用與PM2.5濃度相關(guān)性較強(qiáng)的因素組成氣象特征向量,用對(duì)最小二乘支持向量機(jī)(Least Squares Support Vector Machine, LSSVM)模型進(jìn)行訓(xùn)練,得到準(zhǔn)確度較高的預(yù)測(cè)PM2.5濃度模型。
通過(guò)對(duì)文獻(xiàn)的分析,本文引入了綜合氣象指數(shù)這一指標(biāo),綜合考慮了氣象因素對(duì)PM2.5的影響[7]。同時(shí)從SO2濃度、NO2濃度、PM10濃度、CO濃度、臭氧(O3)的1h濃度、O3的8h濃度等因素中選取出與PM2.5濃度相關(guān)性較強(qiáng)的因素,用這些因素與綜合氣象因素組成特征向量,用特征向量和歷史PM2.5濃度數(shù)據(jù)訓(xùn)練LSSVM模型,再用訓(xùn)練得到的模型來(lái)對(duì)PM2.5濃度進(jìn)行預(yù)測(cè)。通過(guò)仿真研究探討引入綜合氣象指數(shù)、LSSVM模型的預(yù)測(cè)效果,此外加入了PM2.5濃度與日門診量關(guān)系的討論。
熱度圖(Heat Map)是指將特征向量各個(gè)數(shù)據(jù)用不同顏色表示熱度,從而體現(xiàn)個(gè)因素的相關(guān)性。熱度圖的好處在于直觀地表現(xiàn)出了每一個(gè)特征與PM2.5的相關(guān)情況。不同顏色表示不同的相關(guān)性,其中淺色代表相關(guān)系數(shù)為正,即正相關(guān);深色代表相關(guān)系數(shù)為負(fù),即負(fù)相關(guān);白色代表不相關(guān);同時(shí)顏色越深表示相關(guān)性越強(qiáng)。
本文運(yùn)用R軟件對(duì)PM2.5濃度與二氧化硫(SO2)濃度、二氧化氮(NO2)濃度、一氧化碳(CO)濃度、PM10濃度、O3的1h濃度、O3的8h濃度、綜合氣象指數(shù)等因素的相關(guān)性繪制了熱度圖(如圖2所示)。在圖2(O表示綜合氣象指數(shù))中,將樣本中PM2.5濃度與其他因素相關(guān)系數(shù)的值按從高到低排序,以方便得到其與各因素之間的關(guān)系,用排序后的PM2.5濃度相關(guān)系數(shù)繪圖得到顏色變化為從淺色到深色漸變的圖像。可以看出綜合氣象指數(shù)的變化趨勢(shì)較平滑,其熱度圖顏色呈現(xiàn)出從深色到淺色變化的趨勢(shì),即綜合氣象指數(shù)值高時(shí),PM2.5濃度低;綜合氣象指數(shù)值低時(shí)PM2.5濃度高;其與PM2.5成負(fù)相關(guān)關(guān)系。二氧化硫(SO2)濃度、二氧化氮(NO2)濃度、一氧化碳(CO)濃度、PM10濃度變化趨勢(shì)也較平滑,其熱度圖顏色呈現(xiàn)出從淺色到深色變化的趨勢(shì),即這幾個(gè)指標(biāo)值高時(shí),PM2.5濃度高;這幾個(gè)指標(biāo)值低時(shí)PM2.5濃度低,其與PM2.5成正相關(guān)關(guān)系。其他指標(biāo)呈現(xiàn)出的相關(guān)性趨勢(shì)不明顯。
2仿真結(jié)果與分析
2.1模型預(yù)測(cè)結(jié)果對(duì)比
本研究通過(guò)查閱文獻(xiàn)發(fā)現(xiàn),秦霞等[1]的研究誤差較低但是泛化能力較低,國(guó)外文獻(xiàn)中大多數(shù)研究PM2.5濃度同各污染物濃度的定性關(guān)系和空間分布[11-13],研究某一城市PM2.5濃度和其他污染物定量關(guān)系的文獻(xiàn)較少,故本文選擇在兩城市兩方法之間比較。本文選取城市A[14]環(huán)境監(jiān)測(cè)站官方網(wǎng)站20130101―20130919的PM2.5濃度數(shù)據(jù)和中國(guó)天氣網(wǎng)的氣象數(shù)據(jù)。將所得數(shù)據(jù)分成訓(xùn)練組(180d)和測(cè)試組(32d)。使用訓(xùn)練組數(shù)據(jù)對(duì)LSSVM模型訓(xùn)練得到訓(xùn)練后的模型,再用訓(xùn)練后的模型計(jì)算測(cè)試數(shù)據(jù),得到測(cè)試值PM2.5濃度,將得到的結(jié)果與測(cè)試組真實(shí)的PM2.5濃度對(duì)比,驗(yàn)證預(yù)測(cè)的準(zhǔn)確度。
當(dāng)構(gòu)成特征向量的因素只選取二氧化硫(SO2)濃度、二氧化氮(NO2)濃度、一氧化碳(CO)濃度,不加入綜合氣象指數(shù)時(shí),預(yù)測(cè)出的PM2.5濃度如圖3(a);加入綜合氣象指數(shù)因素后,預(yù)測(cè)出的PM2.5濃度如圖3(b)。將特征向量中有無(wú)綜合氣象指數(shù)的結(jié)果進(jìn)行對(duì)比分析(即改進(jìn)前與改進(jìn)后進(jìn)行對(duì)比分析);改進(jìn)前后的仿真效果對(duì)比如圖3所示。
雖然LSSVM模型能夠建立PM2.5濃度的以特征向量為調(diào)控因子的關(guān)系鏈――“特征向量PM2.5濃度”,但是該模型所構(gòu)建的PM2.5關(guān)系鏈只能反映PM2.5形成的過(guò)程,沒(méi)有涉及PM2.5與人類健康(如住院率、日門診量)等后續(xù)問(wèn)題的相關(guān)關(guān)系。事實(shí)上,PM2.5會(huì)對(duì)人類健康產(chǎn)生嚴(yán)重影響,已經(jīng)成為不爭(zhēng)的事實(shí)。下一步工作將會(huì)在本文基礎(chǔ)上,對(duì)PM2.5的濃度變化給醫(yī)院日門診量、病人住院率帶來(lái)怎樣的影響進(jìn)行更進(jìn)一步的定量研究,進(jìn)而實(shí)現(xiàn)從海量氣象數(shù)據(jù)、環(huán)境數(shù)據(jù)和醫(yī)療數(shù)據(jù)中挖掘出它們內(nèi)在的聯(lián)系和實(shí)用信息的目的。
4結(jié)語(yǔ)
污染物濃度和氣象因素一直是影響PM2.5預(yù)測(cè)的主要因素,分別分析單一氣象因素的影響,不能很好地體現(xiàn)出多個(gè)氣象因素產(chǎn)生的耦合效果對(duì)氣象因素的影響規(guī)律。本文引入綜合氣象因素這一指標(biāo),在綜合考慮SO2濃度、NO2濃度、CO濃度和PM10濃度的基礎(chǔ)上,將其與綜合氣象因素組合構(gòu)成特征向量,使用特征向量和PM2.5濃度值,建立LSSVM模型。通過(guò)城市A和城市B環(huán)境監(jiān)測(cè)站的數(shù)據(jù)研究表明,使用本文方法較為合理,同時(shí)預(yù)測(cè)精度較高,根據(jù)測(cè)試,預(yù)測(cè)結(jié)果比較逼近真實(shí)數(shù)據(jù),模型泛化能力較強(qiáng)。
另外,本文結(jié)合實(shí)際情況,對(duì)PM2.5與醫(yī)院門診量等相關(guān)指標(biāo)進(jìn)行了定性的分析,發(fā)現(xiàn)它們有高度的相關(guān)性,這為下一步的通過(guò)PM2.5濃度預(yù)測(cè)日門診量等工作奠定了一些基礎(chǔ)。
雖然本文設(shè)計(jì)的模型預(yù)測(cè)效果較好,但是由于PM2.5的形成機(jī)制十分復(fù)雜,影響PM2.5濃度的未知因素仍然存在,這使得本文模型的預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)還有一定差距,仍存在改進(jìn)與提高的空間。
參考文獻(xiàn):
[1]QIN X, LEI L, YAO X. Methods to improve the generalization of BP neural network applied in air pollution forecasting [J]. Journal of Beijing University of Technology, 2007, 33(8): 849-852.(秦俠,雷蕾,姚小麗.大氣污染預(yù)測(cè)中提高BP網(wǎng)絡(luò)泛化能力的方法[J].北京工業(yè)大學(xué)學(xué)報(bào),2007,33(8):849-852.)
[2]CHEN L, WU D, CHEN Q. Wavelet analysis and support vector machine used in predicting atmospheric pollution [J]. Xian University of Science and Technology, 2010, 30(6): 726-730.(陳柳,吳冬梅,陳俏.小波分析及支持向量機(jī)應(yīng)用于大氣污染預(yù)測(cè)[J].西安科技大學(xué)學(xué)報(bào),2010,30(6):726-730.)
[3]SU J, QIN X, LEI L, et al. Study of neural networks in air pollution forecasting application [J]. Sichuan Environment, 2008, 27(2): 98-101.(蘇靜芝,秦俠,雷蕾,等.神經(jīng)網(wǎng)絡(luò)在空氣污染預(yù)報(bào)中的應(yīng)用研究[J].四川環(huán)境,2008,27(2):98-101.)
[4]CHEN Q, CAO G, CHEN L. SVM applied to predict the concentration of atmospheric pollutants [J]. Computer Technology and Development, 2010, 20(1): 250-252.(陳俏,曹根牛,陳柳.支持向量機(jī)應(yīng)用于大氣污染物濃度預(yù)測(cè)[J].計(jì)算機(jī)技術(shù)與發(fā)展,2010,20(1):250-252.)
[5]WEI Z, GUO Z, ZHANG L, et al. The application of an air pollution model based on the Gauss mode [J]. China Ocean University: Natural Science, 2008, 38(2): 327-330.(魏振鋼,郭遵強(qiáng),張琳,等.基于高斯模式的大氣污染模型的應(yīng)用[J].中國(guó)海洋大學(xué)學(xué)報(bào):自然科學(xué)版,2008,38(2):327-330.)
[6]WANG Y, DONG L, CHEN J. The study of threedimensional multibox model of prediction of atmospheric environment [C]// Proceedings of the 2007 China Environmental Science Society Annual Conference. Beijing: China Environmental Science Press, 2007: 621-625.(王燕,董麗,陳劍.三維多箱模型預(yù)測(cè)大氣環(huán)境的研究[C]// 2007中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)優(yōu)秀論文集.北京:中國(guó)環(huán)境科學(xué)出版社,2007:621-625.)
[7]CHARRON A, HARRISON R. Fine (PM2. 5) and coarse (PM2.510) particulate matter on a heavily trafficked London highway: sources and processes [J]. Environmental Science and Technology, 2005, 39(20): 7768-7776.
[8]YAN L. Correlation coefficient and partial correlation coefficient in the relevant analysis [J]. Journal of Yunnan Institute of Finance, 2003, 19(3): 78-80.(嚴(yán)麗坤.相關(guān)系數(shù)與偏相關(guān)系數(shù)在相關(guān)分析中的應(yīng)用[J].云南財(cái)貿(mào)學(xué)院學(xué)報(bào),2003,19(3)78-80.)
[9]HE H, ZHOU X, ZENG J. Shortterm load forecasting simplified LSSVM model and implementation [J]. Computer Simulation, 2011, 28(1): 302-306.(賀紅林,周翔,曾勁松.短期負(fù)荷預(yù)測(cè)的簡(jiǎn)化LSSVM模型及實(shí)現(xiàn)[J].計(jì)算機(jī)仿真,2011,28(1):302-306.)
[10]YAN W, SHAO H. Support vector machines and comparison and application of least squares support vector machine [J]. Control and Decision, 2003, 18(3): 358-360.(閻威武,邵惠鶴.支持向量機(jī)和最小二乘支持向量機(jī)的比較及應(yīng)用研究[J].控制與決策,2003,18(3):358-360.)
[11]LIU Y, PACIOREK C, KOUTRAKIS P. Estimating regional spatial and temporal variability of PM2. 5 concentrations using satellite data, meteorology, and land use information [J]. Environmental Health Perspectives, 2009, 117(6): 886-892.
[12]TURPIN B, LIM H. Species contributions to PM2. 5 mass concentrations: revisiting common assumptions for estimating organic mass [J]. Aerosol Science and Technology, 2001, 35(1): 602-610.
[13]McKENDRY I. Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2. 5) forecasting [J]. Journal of the Air and Waste Management Association, 2002, 52(9): 1096-1101.
[14]Xian Environmental Monitoring Station. Daily air quality [EB/OL]. (20130920) [20140105]. http:///.(西安市環(huán)境監(jiān)測(cè)站.空氣質(zhì)量日?qǐng)?bào)[EB/OL]. (20130920) [20140105]. http:///.)
[15]Wuhan Environmental Monitoring Station. Daily air quality [EB/OL]. (20130920) [20140105]. http:///.(武漢市環(huán)境監(jiān)測(cè)站.空氣質(zhì)量日?qǐng)?bào)[EB/OL]. (20130920) [20140105]. http:///.)
[16]Ningbo Environmental Monitoring Station. Daily air quality [EB/OL]. (20131220) [20140105]. http:///.(寧波市環(huán)境監(jiān)測(cè)站. 空氣質(zhì)量日?qǐng)?bào)[EB/OL]. (20131220) [20140105]. http:///.)
地球環(huán)境問(wèn)題(一)、水污染
水是我們?nèi)粘W钚枰采辖佑|最多的物質(zhì)之一,然而就是水如今也成了危險(xiǎn)品。
地球環(huán)境問(wèn)題(二)、海洋污染
人類活動(dòng)使近海區(qū)的氮和磷增加50%-200%;過(guò)量營(yíng)養(yǎng)物導(dǎo)致沿海藻類大量生長(zhǎng);波羅的海、北海、黑海、東中國(guó)海(東海)等出現(xiàn)赤潮。海洋污染導(dǎo)致赤潮頻繁發(fā)生,破壞了紅樹(shù)林、珊瑚礁、海草,使近海魚蝦銳減,漁業(yè)損失慘重。
地球環(huán)境問(wèn)題(三)、危險(xiǎn)性廢物越境轉(zhuǎn)移
危險(xiǎn)性廢物是指除放射性廢物以外,具有化學(xué)活性或毒性、爆炸性、腐蝕性和其他對(duì)人類生存環(huán)境存在有害特性的廢物。美國(guó)在資源保護(hù)與回收法中規(guī)定,所謂危險(xiǎn)廢物是指一種固體廢物和幾種固體的混合物,因其數(shù)量和濃度較高,可能造成或?qū)е氯祟愃劳觯蛞饑?yán)重的難以治愈疾病或致殘的廢物。
地球環(huán)境問(wèn)題(四)、全球氣候變暖
由于人口的增加和人類生產(chǎn)活動(dòng)的規(guī)模越來(lái)越大,向大氣釋放的二氧化碳(CO2)、甲烷(CH4)、一氧化二氮(N2O)、氯氟碳化合物(CFC)、四氯化碳(CCl4)、一氧化碳(CO)等溫室氣體不斷增加,導(dǎo)致大氣的組成發(fā)生變化。大氣質(zhì)量受到影響,氣候有逐漸變暖的趨勢(shì)。由于全球氣候變暖,將會(huì)對(duì)全球產(chǎn)生各種不同的影響,較高的溫度可使極地冰川融化,海平面每20xx年將升高6厘米,因而將使一些海岸地區(qū)被淹沒(méi)。全球變暖也可能影響到降雨和大氣環(huán)流的變化,使氣候反常,易造成旱澇災(zāi)害,這些都可能導(dǎo)致生態(tài)系統(tǒng)發(fā)生變化和破壞,全球氣候變化將對(duì)人類生活產(chǎn)生一系列重大影響。
地球環(huán)境問(wèn)題(五)、臭氧層的耗損與破壞
在離地球表面10~50千米的大氣平流層中集中了地球上90%的臭氧氣體,在離地面25千米處臭氧濃度最大,形成了厚度約為3毫米的臭氧集中層,稱為臭氧層。它能吸收太陽(yáng)的紫外線,以保護(hù)地球上的生命免遭過(guò)量紫外線的傷害,并將能量貯存在上層大氣,起到調(diào)節(jié)氣候的作用。但臭氧層是一個(gè)很脆弱的大氣層,如果進(jìn)入一些破壞臭氧的氣體,它們就會(huì)和臭氧發(fā)生化學(xué)作用,臭氧層就會(huì)遭到破壞。臭氧層被破壞,將使地面受到紫外線輻射的強(qiáng)度增加,給地球上的生命帶來(lái)很大的危害。研究表明,紫外線輻射能破壞生物蛋白質(zhì)和基因物質(zhì)脫氧核糖核酸,造成細(xì)胞死亡;使人類皮膚癌發(fā)病率增高;傷害眼睛,導(dǎo)致白內(nèi)障而使眼睛失明;抑制植物如大豆、瓜類、蔬菜等的生長(zhǎng),并穿透10米深的水層,殺死浮游生物和微生物,從而危及水中生物的食物鏈和自由氧的來(lái)源,影響生態(tài)平衡和水體的自凈能力。
地球環(huán)境問(wèn)題(六)、生物多樣性減少
《生物多樣性公約》指出,生物多樣性“是指所有來(lái)源的形形的生物體,這些來(lái)源包括陸地、海洋和其他水生生態(tài)系統(tǒng)及其所構(gòu)成的生態(tài)綜合體;它包括物種內(nèi)部、物種之間和生態(tài)系統(tǒng)的多樣性。”在漫長(zhǎng)的生物進(jìn)化過(guò)程中會(huì)產(chǎn)生一些新的物種,同時(shí),隨著生態(tài)環(huán)境條件的變化,也會(huì)使一些物種消失。所以說(shuō),生物多樣性是在不斷變化的。近百年來(lái),由于人口的急劇增加和人類對(duì)資源的不合理開(kāi)發(fā),加之環(huán)境污染等原因,地球上的各種生物及其生態(tài)系統(tǒng)受到了極大的沖擊,生物多樣性也受到了很大的損害。有關(guān)學(xué)者估計(jì),世界上每年至少有5萬(wàn)種生物物種滅絕,平均每天滅絕的物種達(dá)140個(gè),估計(jì)到21世紀(jì)初,全世界野生生物的損失可達(dá)其總數(shù)的15%~30%。在中國(guó),由于人口增長(zhǎng)和經(jīng)濟(jì)發(fā)展的壓力,對(duì)生物資源的不合理利用和破壞,生物多樣性所遭受的損失也非常嚴(yán)重,大約已有200個(gè)物種已經(jīng)滅絕;估計(jì)約有5000種植物已處于瀕危狀態(tài),這些約占中國(guó)高等植物總數(shù)的20%;大約還有398種脊椎動(dòng)物也處在瀕危狀態(tài),約占中國(guó)脊椎動(dòng)物總數(shù)的7.7%左右。因此,保護(hù)和拯救生物多樣性以及這些生物賴以生存的生活條件,同樣是擺在我們面前的重要任務(wù)。
地球環(huán)境問(wèn)題(七)、酸雨蔓延
酸雨是指大氣降水中酸堿度(PH值)低于5.6的雨、雪或其他形式的降水。這是大氣污染的一種表現(xiàn)。 酸雨對(duì)人類環(huán)境的影響是多方面的。酸雨降落到河流、湖泊中,會(huì)妨礙水中魚、蝦的成長(zhǎng),以致魚蝦減少或絕跡;酸雨還導(dǎo)致土壤酸化,破壞土壤的營(yíng)養(yǎng),使土壤貧瘠化,危害植物的生長(zhǎng),造成作物減產(chǎn),危害森林的生長(zhǎng)。此外,酸雨還腐蝕建筑材料,有關(guān)資料說(shuō)明,近十幾年來(lái),酸雨地區(qū)的一些古跡特別是石刻、石雕或銅塑像的損壞超過(guò)以往百年以上,甚至千年以上。世界已有三大酸雨區(qū)。我國(guó)華南酸雨區(qū)是唯一尚未治理的。
地球環(huán)境問(wèn)題(八)、森林銳減
地球上,我們的綠色屏障——森林正以平均每年4000平方公里的速度消失。森林的減少使其涵養(yǎng)水源的功能受到破壞,造成了物種的減少和水土流失,對(duì)二氧化碳的吸收減少進(jìn)而又加劇了溫室效應(yīng)。
地球環(huán)境問(wèn)題(九)、土地荒漠化
全球陸地面積占60%,其中沙漠和沙漠化面積29%。每年有600萬(wàn)公頃的土地變成沙漠。經(jīng)濟(jì)損失每年423億美元。全球共有干旱、半干旱土地50億公頃,其中33億遭到荒漠化威脅。致使每年有600萬(wàn)公頃的農(nóng)田、900萬(wàn)公頃的牧區(qū)失去生產(chǎn)力。人類文明的搖籃底格里斯河、幼發(fā)拉底河流域,已由沃土變成荒漠。中國(guó)的黃河流域,水土流失亦十分嚴(yán)重。
大氣顆粒物是大氣環(huán)境中化學(xué)組成復(fù)雜、來(lái)源多樣、危害較大的污染物之一[1-2],是降低大氣能見(jiàn)度,造成灰霾天氣的主要原因.大氣顆粒物濃度超標(biāo)是我國(guó)許多城市空氣質(zhì)量管理中的突出問(wèn)題.可吸入顆粒物(PM10)可通過(guò)呼吸道進(jìn)入人體,沉積在上呼吸道,粒徑小于2.5μm的細(xì)粒子(PM2.5)可進(jìn)入肺泡中,并可能導(dǎo)致與心和肺的功能障礙有關(guān)的疾病[3].PM2.5由含碳物質(zhì)、水溶性無(wú)機(jī)鹽和不溶礦物質(zhì)構(gòu)成,主要來(lái)自各種燃燒過(guò)程的一次排放和氣態(tài)污染物的二次轉(zhuǎn)化[4].有研究表明[5-7],我國(guó)城市大氣中PM2.5約占PM10的50%~70%.成都市地處四川盆地,風(fēng)速小、靜風(fēng)頻率高,環(huán)境空氣中PM10濃度長(zhǎng)期居高不下,成為主要的環(huán)境問(wèn)題[8].近3年來(lái),成都市PM10年均濃度均超過(guò)了100μg/m3,且城區(qū)日均濃度值超標(biāo)率達(dá)到15%左右[9-11].為弄清PM10和PM2.5的污染狀況、分布特征以及與氣象條件的關(guān)系,本研究通過(guò)對(duì)成都不同采樣點(diǎn)PM10和PM2.5質(zhì)量濃度的時(shí)空分布特征分析,了解成都市大氣顆粒物的污染狀況、及其與氣象條件的關(guān)系,為進(jìn)一步對(duì)大氣顆粒物的來(lái)源和化學(xué)組成分析提供依據(jù).
1材料與方法
1.1樣品采集
采樣點(diǎn)位于成都市上風(fēng)向的麗都花園(E104°2′9″,N30°37′48″)、下風(fēng)向的熊貓基地(E104°8′50″,N30°43′58″)、以及市中心的草堂寺(E104°1′41″,N30°39′44″),3個(gè)采樣點(diǎn)分別代表了成都市的生活集中區(qū)、城市郊區(qū)和商業(yè)區(qū)3類不同的功能區(qū)劃.采樣時(shí)間為2009年8月22日~9月20日.每天連續(xù)24h采樣,每個(gè)采樣點(diǎn)分別采集30組樣品,3個(gè)采樣點(diǎn)共采集90個(gè)有效的PM2.5樣品和86個(gè)有效的PM10樣品.
1.2樣品分析
采樣前將石英濾膜放在600℃條件下加熱處理2h,以除去殘留或吸附在濾膜上的有機(jī)物,采樣前對(duì)濾膜進(jìn)行至少48h以上的干燥,平衡、稱重(精密度為萬(wàn)分之一的電子天平).通過(guò)采樣前、后濾膜重量之差,以及采樣標(biāo)況體積(101.325kPa,273K條件下),計(jì)算得到環(huán)境空氣中PM10和PM2.5的質(zhì)量濃度.
1.3氣象數(shù)據(jù)來(lái)源
氣象參數(shù)采用成都市同期地面氣象觀測(cè)數(shù)據(jù)(氣溫、氣壓、風(fēng)速、相對(duì)濕度、降水等),成都市能見(jiàn)度數(shù)據(jù)采用成都溫江區(qū)每天02:00、08:00、14:00和20:00觀測(cè)數(shù)據(jù).
2結(jié)果與討論
2.1PM2.5和PM10的污染狀況
表1給出了采樣期間3個(gè)采樣點(diǎn)PM2.5和PM10的日平均濃度以及濃度變化范圍.由表1可知,PM2.5和PM10濃度均是熊貓基地>草堂寺>麗都花園,成都市PM2.5和PM10平均濃度分別為66,94μg/m3.根據(jù)我國(guó)最新公布的環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)GB3095-2012中PM2.5和PM10二級(jí)標(biāo)準(zhǔn)日均濃度限值(75μg/m3和150μg/m3)[12]得出成都市PM2.5和PM10日均濃度超標(biāo)率分別為35.56%和12.79%.3個(gè)采樣點(diǎn)的PM2.5日均濃度超標(biāo)率:草堂寺>熊貓基地>麗都花園,PM10日均濃度超標(biāo)率:熊貓基地>草堂寺>麗都花園.
由圖1和圖2可知,PM2.5和PM10質(zhì)量濃度變化范圍較大.將采樣期分為2部分:清潔天氣和污染天氣.以國(guó)家二級(jí)空氣質(zhì)量標(biāo)準(zhǔn)PM10限值150μg/m3作比較,有4d(9月7日、8日、17日和18日)超過(guò)該限值,定義為污染天氣;其余未超過(guò)該標(biāo)準(zhǔn)的26d為清潔天氣.PM10和PM2.5在整個(gè)采樣期呈同步變化趨勢(shì),出現(xiàn)典型的清潔-污染-清潔-污染-清潔天氣過(guò)程.從空間分布來(lái)看,PM2.5和PM10質(zhì)量濃度均是熊貓基地>草堂寺>麗都花園,熊貓基地較其余2個(gè)采樣點(diǎn)污染較為嚴(yán)重的原因主要是:熊貓基地處于成都市下風(fēng)向,并且大氣底層出現(xiàn)氣旋式環(huán)流,導(dǎo)致大氣顆粒物的輸送、累積.從時(shí)間分布來(lái)看,PM2.5和PM10質(zhì)量濃度在污染天氣9月18日出現(xiàn)最大值,分別為171μg/m3(熊貓基地)和265μg/m3(熊貓基地),不利氣象條件是造成熊貓基地在該日出現(xiàn)濃度最大值的主要原因;9月7~9日PM2.5和PM10質(zhì)量濃度相對(duì)較高;清潔天氣9月13日PM2.5和PM10質(zhì)量濃度出現(xiàn)最低值,分別為11μg/m3(熊貓基地)和15μg/m3(麗都花園).大部分觀測(cè)日的PM10日均值<150mg/m3,空氣質(zhì)量達(dá)到“良”,12.8%的空氣質(zhì)量為“輕微污染”,但PM2.5未達(dá)到我國(guó)最新公布的環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)GB3095-2012中PM2.5二級(jí)標(biāo)準(zhǔn)日均濃度限值(75μg/m3)的觀測(cè)日超過(guò)總觀測(cè)天數(shù)的三分之一,表明成都市大氣細(xì)顆粒物PM2.5污染較嚴(yán)重.
2.2PM2.5占PM10百分比情況
根據(jù)圖3可知,PM2.5和PM10質(zhì)量濃度顯著相關(guān),相關(guān)系數(shù)R達(dá)0.93.線性回歸結(jié)果表明在整個(gè)采樣期3個(gè)采樣點(diǎn)PM2.5占PM10質(zhì)量載荷的66.5%,表明細(xì)粒子對(duì)大氣顆粒物污染貢獻(xiàn)顯著.由表1及圖4可知,成都市PM2.5/PM10平均值為0.69,變化范圍0.48~0.91;3個(gè)采樣點(diǎn)PM2.5/PM10平均值熊貓基地<麗都花園≈草堂寺.2009年8月~9月PM2.5/PM10平均值明顯高于成都2001年6月觀測(cè)值0.46[8],可能原因是近年來(lái)成都市采取的一些措施(對(duì)污染較重工廠的外遷、對(duì)揚(yáng)塵和建筑塵等污染源進(jìn)行控制)對(duì)2009年大氣粗顆粒污染狀況的改善作用更為明顯,以及成都市機(jī)動(dòng)車保有量增加所帶來(lái)的機(jī)動(dòng)車尾氣排放量增加,進(jìn)而導(dǎo)致PM2.5質(zhì)量濃度升高.
2.3顆粒物濃度與氣象要素的關(guān)系
氣象要素(溫度、風(fēng)速、氣壓、相對(duì)濕度和降水等)是影響大氣顆粒物質(zhì)量濃度的重要因素.一定的氣溫、風(fēng)速、氣壓、相對(duì)濕度和降水情況構(gòu)成一定的天氣狀況,有利天氣狀況(低溫、大風(fēng)、低濕等)有利于顆粒物的稀釋擴(kuò)散,導(dǎo)致顆粒物質(zhì)量濃度降低;而不利的天氣狀況則導(dǎo)致顆粒物質(zhì)量濃度升高[13].圖5為觀測(cè)期間PM2.5和PM10質(zhì)量濃度與氣象要素(溫度、風(fēng)速、氣壓、相對(duì)濕度和降水量)隨時(shí)間的變化關(guān)系圖.
2.3.1溫度對(duì)顆粒物濃度的影響
采樣期間,成都市日均氣溫范圍為19~31℃,統(tǒng)計(jì)分析表明,3個(gè)采樣點(diǎn)PM2.5和PM10質(zhì)量濃度與溫度沒(méi)有明顯相關(guān)性(相關(guān)系數(shù)分別為0.29和0.23),說(shuō)明與溫度相關(guān)的氣候條件如日照強(qiáng)度與日照時(shí)間對(duì)顆粒物在大氣中的分布沒(méi)有顯著影響.
2.3.2氣壓對(duì)顆粒物濃度的影響
氣壓的高低與大氣環(huán)流形勢(shì)密切相關(guān).當(dāng)?shù)孛媸艿蛪嚎刂茣r(shí),四周高壓氣團(tuán)流向中心,中心形成上升氣流,通常風(fēng)力較大,利于污染物向上擴(kuò)散,顆粒物濃度較小;地面受高壓控制時(shí),中心部位出現(xiàn)下沉氣流,阻止污染物向上擴(kuò)散,在穩(wěn)定高壓的控制下,大氣污染加重,顆粒物濃度較大[14].由圖5b可知,2009年8月30日~9月3日,氣壓逐日減小,而顆粒物濃度則逐日增大;2009年9月11日~17日,氣壓總體呈先增后降趨勢(shì),顆粒物濃度則呈先降后增.由此可見(jiàn),該2時(shí)段顆粒物質(zhì)量濃度與氣壓存在較明顯的負(fù)相關(guān),并且PM2.5、PM10與氣壓的相關(guān)系數(shù)R分別為-0.25和-0.31.
2.3.3風(fēng)速對(duì)顆粒物濃度的影響
風(fēng)是反映大氣動(dòng)力穩(wěn)定性的重要特征量,是與空氣污染密切相關(guān)的氣象參數(shù),它對(duì)大氣污染物的稀釋擴(kuò)散和三維輸送起著重要作用[15].一般來(lái)說(shuō),風(fēng)速越大,越有利于大氣顆粒物擴(kuò)散,相應(yīng)濃度越低;反之,濃度越高.由圖5c可知,整個(gè)采樣期間,顆粒物濃度與風(fēng)速變化趨勢(shì)相反,顆粒物濃度最高值出現(xiàn)在2009年9月18日,風(fēng)速最小,0.3m/s條件.PM2.5和PM10質(zhì)量濃度與風(fēng)速的相關(guān)系數(shù)R分別為-0.47和-0.45.
2.3.4相對(duì)濕度對(duì)顆粒物濃度的影響
由圖5d知,隨著相對(duì)濕度的上升和下降,大氣顆粒物濃度表現(xiàn)出不完全一致的變化趨勢(shì).在一定濕度范圍(以不發(fā)生重力沉降為界限)內(nèi),相對(duì)濕度越大越有利于顆粒物的形成,相對(duì)濕度是影響可吸入顆粒物污染的一個(gè)較為重要的因素,尤其是高濕度空氣容易造成顆粒物的較重污染[16].
2.3.5降水對(duì)顆粒物濃度的影響
降水對(duì)環(huán)境空氣中污染物能起到清除和沖刷作用,是一種濕清除(或濕沉降)過(guò)程,因此它是維持大氣成分相對(duì)穩(wěn)定的重要因子[16].由圖5e可知,大氣顆粒物濃度較低值出現(xiàn)在2009年9月10日~14日,期間存在明顯的降水過(guò)程.降水對(duì)PM10濃度的影響較大,通過(guò)雨水作用可大大減少與生產(chǎn)活動(dòng)相關(guān)的揚(yáng)塵,并且降水主要是清除可吸入顆粒物中的粗顆粒,而對(duì)細(xì)顆粒的影響較小.
2.4能見(jiàn)度與顆粒物濃度之間的關(guān)系
研究表明,顆粒物是造成能見(jiàn)度降低的主要原因,造成能見(jiàn)度下降的主要原因是由于大氣中的污染氣體尤其是顆粒物對(duì)可見(jiàn)光的吸收和散射所產(chǎn)生的消光作用所致[17].由圖6可見(jiàn),能見(jiàn)度與PM2.5和PM10質(zhì)量濃度之間具有明顯的負(fù)相關(guān)性,且與PM2.5的相關(guān)系數(shù)(R=-0.59)大于與PM10的相關(guān)系數(shù)(R=-0.51),換言之,能見(jiàn)度的好壞受大氣顆粒物尤其是細(xì)顆粒物的濃度大小的影響.
3結(jié)論
3.1觀測(cè)期間,成都市大氣PM10污染狀況較好,其質(zhì)量濃度日均值為94μg/m3,好于國(guó)家環(huán)境空氣質(zhì)量二級(jí)標(biāo)準(zhǔn)限值;PM2.5質(zhì)量濃度日均值為66μg/m3,略低于我國(guó)最新公布的環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)二級(jí)標(biāo)準(zhǔn)限值;PM2.5和PM10日均濃度超標(biāo)率分別為35.56%和12.79%.
3.2成都市PM2.5、PM10質(zhì)量濃度均是熊貓基地>草堂寺>麗都花園,即下風(fēng)向污染狀況最嚴(yán)重,商業(yè)繁華地段次之,生活居住區(qū)最好;顆粒物污染最嚴(yán)重出現(xiàn)在9月17~19日,以及9月5~9日2個(gè)時(shí)間段,不利的氣象因素和污染物累積是造成該時(shí)間段大氣顆粒物污染加重的主要原因.
3.3PM2.5與PM10質(zhì)量濃度呈顯著相關(guān)性,且兩者的比值更是高達(dá)0.69,表明細(xì)粒子對(duì)大氣顆粒物污染的貢獻(xiàn)較大.
級(jí)別:北大期刊
榮譽(yù):中國(guó)優(yōu)秀期刊遴選數(shù)據(jù)庫(kù)
級(jí)別:SCI期刊
榮譽(yù):中國(guó)優(yōu)秀期刊遴選數(shù)據(jù)庫(kù)
級(jí)別:省級(jí)期刊
榮譽(yù):中國(guó)期刊全文數(shù)據(jù)庫(kù)(CJFD)
級(jí)別:北大期刊
榮譽(yù):Caj-cd規(guī)范獲獎(jiǎng)期刊
級(jí)別:CSCD期刊
榮譽(yù):Caj-cd規(guī)范獲獎(jiǎng)期刊