• <input id="zdukh"></input>
  • <b id="zdukh"><bdo id="zdukh"></bdo></b>
      <b id="zdukh"><bdo id="zdukh"></bdo></b>
    1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

      <wbr id="zdukh"><table id="zdukh"></table></wbr>

      1. <input id="zdukh"></input>
        <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
        <sub id="zdukh"></sub>
        公務(wù)員期刊網(wǎng) 精選范文 神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀精選(九篇)

        前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀主題范文,僅供參考,歡迎閱讀并收藏。

        神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀

        第1篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        [摘要]該文介紹了神經(jīng)網(wǎng)絡(luò)的發(fā)展、優(yōu)點(diǎn)及其應(yīng)用和發(fā)展動(dòng)向,著重論述了神經(jīng)網(wǎng)絡(luò)目前的幾個(gè)研究熱點(diǎn),即神經(jīng)網(wǎng)絡(luò)與遺傳算法、灰色系統(tǒng)、專家系統(tǒng)、模糊控制、小波分析的結(jié)合。

        [關(guān)鍵詞]遺傳算法灰色系統(tǒng)專家系統(tǒng)模糊控制小波分析

        一、前言

        神經(jīng)網(wǎng)絡(luò)最早的研究20世紀(jì)40年代心理學(xué)家Mcculloch和數(shù)學(xué)家Pitts合作提出的,他們提出的MP模型拉開(kāi)了神經(jīng)網(wǎng)絡(luò)研究的序幕。神經(jīng)網(wǎng)絡(luò)的發(fā)展大致經(jīng)過(guò)三個(gè)階段:1947~1969年為初期,在這期間科學(xué)家們提出了許多神經(jīng)元模型和學(xué)習(xí)規(guī)則,如MP模型、HEBB學(xué)習(xí)規(guī)則和感知器等;1970~1986年為過(guò)渡期,這個(gè)期間神經(jīng)網(wǎng)絡(luò)研究經(jīng)過(guò)了一個(gè)低潮,繼續(xù)發(fā)展。在此期間,科學(xué)家們做了大量的工作,如Hopfield教授對(duì)網(wǎng)絡(luò)引入能量函數(shù)的概念,給出了網(wǎng)絡(luò)的穩(wěn)定性判據(jù),提出了用于聯(lián)想記憶和優(yōu)化計(jì)算的途徑。1984年,Hiton教授提出Boltzman機(jī)模型。1986年Kumelhart等人提出誤差反向傳播神經(jīng)網(wǎng)絡(luò),簡(jiǎn)稱BP網(wǎng)絡(luò)。目前,BP網(wǎng)絡(luò)已成為廣泛使用的網(wǎng)絡(luò);1987年至今為發(fā)展期,在此期間,神經(jīng)網(wǎng)絡(luò)受到國(guó)際重視,各個(gè)國(guó)家都展開(kāi)研究,形成神經(jīng)網(wǎng)絡(luò)發(fā)展的另一個(gè)。神經(jīng)網(wǎng)絡(luò)具有以下優(yōu)點(diǎn):

        (1)具有很強(qiáng)的魯棒性和容錯(cuò)性,因?yàn)樾畔⑹欠植假A于網(wǎng)絡(luò)內(nèi)的神經(jīng)元中。

        (2)并行處理方法,使得計(jì)算快速。

        (3)自學(xué)習(xí)、自組織、自適應(yīng)性,使得網(wǎng)絡(luò)可以處理不確定或不知道的系統(tǒng)。

        (4)可以充分逼近任意復(fù)雜的非線性關(guān)系。

        (5)具有很強(qiáng)的信息綜合能力,能同時(shí)處理定量和定性的信息,能很好地協(xié)調(diào)多種輸入信息關(guān)系,適用于多信息融合和多媒體技術(shù)。

        二、神經(jīng)網(wǎng)絡(luò)應(yīng)用現(xiàn)狀

        神經(jīng)網(wǎng)絡(luò)以其獨(dú)特的結(jié)構(gòu)和處理信息的方法,在許多實(shí)際應(yīng)用領(lǐng)域中取得了顯著的成效,主要應(yīng)用如下:

        (1)圖像處理。對(duì)圖像進(jìn)行邊緣監(jiān)測(cè)、圖像分割、圖像壓縮和圖像恢復(fù)。

        (2)信號(hào)處理。能分別對(duì)通訊、語(yǔ)音、心電和腦電信號(hào)進(jìn)行處理分類;可用于海底聲納信號(hào)的檢測(cè)與分類,在反潛、掃雷等方面得到應(yīng)用。

        (3)模式識(shí)別。已成功應(yīng)用于手寫(xiě)字符、汽車牌照、指紋和聲音識(shí)別,還可用于目標(biāo)的自動(dòng)識(shí)別和定位、機(jī)器人傳感器的圖像識(shí)別以及地震信號(hào)的鑒別等。

        (4)機(jī)器人控制。對(duì)機(jī)器人眼手系統(tǒng)位置進(jìn)行協(xié)調(diào)控制,用于機(jī)械手的故障診斷及排除、智能自適應(yīng)移動(dòng)機(jī)器人的導(dǎo)航。

        (5)衛(wèi)生保健、醫(yī)療。比如通過(guò)訓(xùn)練自主組合的多層感知器可以區(qū)分正常心跳和非正常心跳、基于BP網(wǎng)絡(luò)的波形分類和特征提取在計(jì)算機(jī)臨床診斷中的應(yīng)用。

        (6)焊接領(lǐng)域。國(guó)內(nèi)外在參數(shù)選擇、質(zhì)量檢驗(yàn)、質(zhì)量預(yù)測(cè)和實(shí)時(shí)控制方面都有研究,部分成果已得到應(yīng)用。

        (7)經(jīng)濟(jì)。能對(duì)商品價(jià)格、股票價(jià)格和企業(yè)的可信度等進(jìn)行短期預(yù)測(cè)。

        (8)另外,在數(shù)據(jù)挖掘、電力系統(tǒng)、交通、軍事、礦業(yè)、農(nóng)業(yè)和氣象等方面亦有應(yīng)用。

        三、神經(jīng)網(wǎng)絡(luò)發(fā)展趨勢(shì)及研究熱點(diǎn)

        1.神經(jīng)網(wǎng)絡(luò)研究動(dòng)向

        神經(jīng)網(wǎng)絡(luò)雖已在許多領(lǐng)域應(yīng)用中取得了廣泛的成功,但其發(fā)展還不十分成熟,還有一些問(wèn)題需進(jìn)一步研究。

        (1)神經(jīng)計(jì)算的基礎(chǔ)理論框架以及生理層面的研究仍需深入。這方面的工作雖然很困難,但為了神經(jīng)計(jì)算的進(jìn)一步發(fā)展卻是非做不可的。

        (2)除了傳統(tǒng)的多層感知機(jī)、徑向基函數(shù)網(wǎng)絡(luò)、自組織特征映射網(wǎng)絡(luò)、自適應(yīng)諧振理論網(wǎng)絡(luò)、模糊神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)之外,一些新的模型和結(jié)構(gòu)很值得關(guān)注,例如最近興起的脈沖神經(jīng)網(wǎng)絡(luò)(spikingneuralnetwork)和支持向量機(jī)(supportvectormachine)。

        (3)神經(jīng)計(jì)算技術(shù)與其他技術(shù)尤其是進(jìn)化計(jì)算技術(shù)的結(jié)合以及由此而來(lái)的混合方法和混合系統(tǒng),正成為一大研究熱點(diǎn)。

        (4)增強(qiáng)神經(jīng)網(wǎng)絡(luò)的可理解性是神經(jīng)網(wǎng)絡(luò)界需要解決的一個(gè)重要問(wèn)題。這方面的工作在今后若干年中仍然會(huì)是神經(jīng)計(jì)算和機(jī)器學(xué)習(xí)界的一個(gè)研究熱點(diǎn)。

        (5)神經(jīng)網(wǎng)絡(luò)的應(yīng)用領(lǐng)域?qū)⒉粩鄶U(kuò)大,在未來(lái)的幾年中有望在一些領(lǐng)域取得更大的成功,特別是多媒體技術(shù)、醫(yī)療、金融、電力系統(tǒng)等領(lǐng)域。

        2.研究熱點(diǎn)

        (1)神經(jīng)網(wǎng)絡(luò)與遺傳算法的結(jié)合。遺傳算法與神經(jīng)網(wǎng)絡(luò)的結(jié)合主要體現(xiàn)在以下幾個(gè)方面:網(wǎng)絡(luò)連接權(quán)重的進(jìn)化訓(xùn)練;網(wǎng)絡(luò)結(jié)構(gòu)的進(jìn)化計(jì)算;網(wǎng)絡(luò)結(jié)構(gòu)和連接權(quán)重的同時(shí)進(jìn)化;訓(xùn)練算法的進(jìn)化設(shè)計(jì)?;谶M(jìn)化計(jì)算的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)和實(shí)現(xiàn)已在眾多領(lǐng)域得到應(yīng)用,如模式識(shí)別、機(jī)器人控制、財(cái)政等,并取得了較傳統(tǒng)神經(jīng)網(wǎng)絡(luò)更好的性能和結(jié)果。但從總體上看,這方面研究還處于初期階段,理論方法有待于完善規(guī)范,應(yīng)用研究有待于加強(qiáng)提高。神經(jīng)網(wǎng)絡(luò)與進(jìn)化算法相結(jié)合的其他方式也有待于進(jìn)一步研究和挖掘。

        (2)神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)的結(jié)合。灰色系統(tǒng)理論是一門(mén)極有生命力的系統(tǒng)科學(xué)理論,自1982年華中理工大學(xué)的鄧聚龍教授提出灰色系統(tǒng)后迅速發(fā)展,以初步形成以灰色關(guān)聯(lián)空間為基礎(chǔ)的分析體系,以灰色模型為主體的模型體系,以灰色過(guò)程及其生存空間為基礎(chǔ)與內(nèi)的方法體系,以系統(tǒng)分析、建模、預(yù)測(cè)、決策、控制、評(píng)估為綱的技術(shù)體系。目前,國(guó)內(nèi)外對(duì)灰色系統(tǒng)的理論和應(yīng)用研究已經(jīng)廣泛開(kāi)展,受到學(xué)者的普遍關(guān)注?;疑到y(tǒng)理論在在處理不確定性問(wèn)題上有其獨(dú)到之處,并能以系統(tǒng)的離散時(shí)序建立連續(xù)的時(shí)間模型,適合于解決無(wú)法用傳統(tǒng)數(shù)字精確描述的復(fù)雜系統(tǒng)問(wèn)題。

        神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)的結(jié)合方式有:(1)神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)簡(jiǎn)單結(jié)合;(2)串聯(lián)型結(jié)合;(3)用神經(jīng)網(wǎng)絡(luò)增強(qiáng)灰色系統(tǒng);(4)用灰色網(wǎng)絡(luò)輔助構(gòu)造神經(jīng)網(wǎng)絡(luò);(5)神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)的完全融合。

        (3)神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的結(jié)合。基于神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的混合系統(tǒng)的基本出發(fā)點(diǎn)立足于將復(fù)雜系統(tǒng)分解成各種功能子系統(tǒng)模塊,各功能子系統(tǒng)模塊分別由神經(jīng)網(wǎng)絡(luò)或?qū)<蚁到y(tǒng)實(shí)現(xiàn)。其研究的主要問(wèn)題包括:混合專家系統(tǒng)的結(jié)構(gòu)框架和選擇實(shí)現(xiàn)功能子系統(tǒng)方式的準(zhǔn)則兩方面。由于該混合系統(tǒng)從根本上拋開(kāi)了神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)的技術(shù)限制,是當(dāng)前研究的熱點(diǎn)。把粗集神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)用于醫(yī)學(xué)診斷,表明其相對(duì)于傳統(tǒng)方法的優(yōu)越性。

        (4)神經(jīng)網(wǎng)絡(luò)與模糊邏輯的結(jié)合

        模糊邏輯是一種處理不確定性、非線性問(wèn)題的有力工具。它比較適合于表達(dá)那些模糊或定性的知識(shí),其推理方式比較類似于人的思維方式,這都是模糊邏輯的優(yōu)點(diǎn)。但它缺乏有效的自學(xué)習(xí)和自適應(yīng)能力。

        而將模糊邏輯與神經(jīng)網(wǎng)絡(luò)結(jié)合,則網(wǎng)絡(luò)中的各個(gè)結(jié)點(diǎn)及所有參數(shù)均有明顯的物理意義,因此這些參數(shù)的初值可以根據(jù)系統(tǒng)的模糊或定性的知識(shí)來(lái)加以確定,然后利用學(xué)習(xí)算法可以很快收斂到要求的輸入輸出關(guān)系,這是模糊神經(jīng)網(wǎng)絡(luò)比單純的神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)所在。同時(shí),由于它具有神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),因而參數(shù)的學(xué)習(xí)和調(diào)整比較容易,這是它比單純的模糊邏輯系統(tǒng)的優(yōu)點(diǎn)所在。模糊神經(jīng)網(wǎng)絡(luò)控制已成為一種趨勢(shì),它能夠提供更加有效的智能行為、學(xué)習(xí)能力、自適應(yīng)特點(diǎn)、并行機(jī)制和高度靈活性,使其能夠更成功地處理各種不確定的、復(fù)雜的、不精確的和近似的控制問(wèn)題。

        模糊神經(jīng)控制的未來(lái)研究應(yīng)集中于以下幾個(gè)方面:

        (1)研究模糊邏輯與神經(jīng)網(wǎng)絡(luò)的對(duì)應(yīng)關(guān)系,將對(duì)模糊

        控制器的調(diào)整轉(zhuǎn)化為等價(jià)的神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)過(guò)程,用等價(jià)的模糊邏輯來(lái)初始化神經(jīng)網(wǎng)絡(luò);

        (2)完善模糊神經(jīng)控制的學(xué)習(xí)算法,以提高控制算法的速度與性能,可引入遺傳算法、BC算法中的模擬退火算法等,以提高控制性能;

        (3)模糊控制規(guī)則的在線優(yōu)化,可提高控制器的實(shí)時(shí)性與動(dòng)態(tài)性能;(4)需深入研究系統(tǒng)的穩(wěn)定性、能控性、能觀性以及平衡吸引子、混沌現(xiàn)象等非線性動(dòng)力學(xué)特性。

        關(guān)于神經(jīng)網(wǎng)絡(luò)與模糊邏輯相結(jié)合的研究已有很多,比如,用于氬弧焊、機(jī)器人控制等。

        (5)神經(jīng)網(wǎng)絡(luò)與小波分析的結(jié)合

        小波變換是對(duì)Fourier分析方法的突破。它不但在時(shí)域和頻域同時(shí)具有良好的局部化性質(zhì),而且對(duì)低頻信號(hào)在頻域和對(duì)高頻信號(hào)在時(shí)域里都有很好的分辨率,從而可以聚集到對(duì)象的任意細(xì)節(jié)。

        利用小波變換的思想初始化小波網(wǎng)絡(luò),并對(duì)學(xué)習(xí)參數(shù)加以有效約束,采用通常的隨機(jī)梯度法分別對(duì)一維分段函數(shù)、二維分段函數(shù)和實(shí)際系統(tǒng)中汽輪機(jī)壓縮機(jī)的數(shù)據(jù)做了仿真試驗(yàn),并與神經(jīng)網(wǎng)絡(luò)、小波分解的建模做了比較,說(shuō)明了小波網(wǎng)絡(luò)在非線性系統(tǒng)黑箱建模中的優(yōu)越性。小波神經(jīng)網(wǎng)絡(luò)用于機(jī)器人的控制,表明其具有更快的收斂速度和更好的非線性逼近能力。

        四、結(jié)論

        經(jīng)過(guò)半個(gè)多世紀(jì)的發(fā)展,神經(jīng)網(wǎng)絡(luò)理論在模式識(shí)別、自動(dòng)控制、信號(hào)處理、輔助決策、人工智能等眾多研究領(lǐng)域取得了廣泛的成功,但其理論分析方法和設(shè)計(jì)方法還有待于進(jìn)一步發(fā)展。相信隨著神經(jīng)網(wǎng)絡(luò)的進(jìn)一步發(fā)展,其將在工程應(yīng)用中發(fā)揮越來(lái)越大的作用。

        參考文獻(xiàn):

        [1]張?jiān)?模糊數(shù)學(xué)在自動(dòng)化技術(shù)中的應(yīng)用[M].清華大學(xué)出版社,1997.

        [2]李士勇.模糊控制·神經(jīng)控制和智能控制論[M].哈爾濱工業(yè)大學(xué)出版,1996.250-387.

        [3]謝聯(lián)峻.模糊控制在列車自動(dòng)駕駛中的應(yīng)用[J].自動(dòng)化與儀器儀表,1999,(4).

        [4]CollierWC,Weiland,RJSmartCarts,SmartHighways[J].IEEESpec-trum,1994,31(4):27-33.

        [5]HatwalH,MikulcikEC.someInverseSolutionstoanAutomobilePathTrackingProblemwithInputControlofSteeringandBreaks,Ve-hiclesystemDynamics,1986,(15):61-71.

        [6]KosugeK,F(xiàn)ukudaT,AsadaH.AcquisitionifHumanSkillsforRoboticSystem[C].In:ProcIEEEIntSympOnIntelligenControl,1991.469-489.

        [7]王小平,曹立明.遺傳算法—理論、應(yīng)用與軟件實(shí)現(xiàn).西安交通大學(xué)出版社,2002.

        [8]ManiezzoV.Geneticevolutionofthetopologhandweightdistribution

        ofneuralnetwork[J].IEEETransonNeuralNetwork,1994,5(1)35-67.

        [9]HarraldPG,KamstraM.Evolvingartificialneuralnetworkstocombinefinancialforecase[J].IEEETransonEvolComputer,1997,1(1):39-54.

        [10]鄧聚龍.灰色系統(tǒng)理論教程.華中理工大學(xué)出版社,1990.

        [11]呂宏輝,鐘珞,夏紅霞.灰色系統(tǒng)與神經(jīng)網(wǎng)絡(luò)融合技術(shù)探索.微機(jī)發(fā)展,2000,23(4):67-109.

        第2篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        介紹了基于神經(jīng)網(wǎng)絡(luò)的故障針診斷方法和結(jié)合模糊理論應(yīng)用的故障診斷。分析了小波變換的現(xiàn)代模擬電路軟故障診斷的研究現(xiàn)狀。

        關(guān)鍵詞:

        模擬電路;軟故障診斷;神經(jīng)網(wǎng)絡(luò);模糊理論;小波變換

        在最近幾年,現(xiàn)代模擬電路故障診斷方法的研究成為了新的熱點(diǎn)。其中有基于神經(jīng)網(wǎng)絡(luò)。并結(jié)合專家系統(tǒng)、小波變換、模糊理論和遺傳算法?!靶〔ㄉ窠?jīng)網(wǎng)絡(luò)”和“模糊神經(jīng)網(wǎng)絡(luò)”成為主流的模擬電路軟故障診斷方法。

        1基于神經(jīng)網(wǎng)絡(luò)的故障診斷方法

        神經(jīng)網(wǎng)絡(luò)有自組織性、自學(xué)性、并行性、聯(lián)想記憶和分類功能,這些信息處理特點(diǎn)使其能夠解決一些傳統(tǒng)模式難以解決的問(wèn)題。其中模擬電路故障診斷中的非線性和容差問(wèn)題就是運(yùn)用神經(jīng)網(wǎng)絡(luò)的非線性映射能力和泛化能力來(lái)解決的,同時(shí)這也是專家門(mén)的較為感興趣的研究熱點(diǎn)?;谏窠?jīng)網(wǎng)絡(luò)的模擬電路故障診斷方法有一些,其中包括測(cè)試節(jié)點(diǎn)的選擇、確定被測(cè)故障集、故障特征的提取等步驟,這種方法與基于測(cè)前仿真的故障字典法雷同。前者用制作神經(jīng)網(wǎng)絡(luò)和樣本集來(lái)儲(chǔ)存特征信息,而且在測(cè)試完畢后定位故障是通過(guò)神經(jīng)網(wǎng)絡(luò)來(lái)處理。所以可以把基于神經(jīng)網(wǎng)絡(luò)的方法當(dāng)作是基于測(cè)后仿真和測(cè)前仿真的延伸與綜合。在故障診斷領(lǐng)域,誤差反傳神經(jīng)網(wǎng)絡(luò)(backpropagationneuralnetwork,BPNN)擁有較好的模式分類特性。然而僅僅以節(jié)點(diǎn)電壓視作故障特征訓(xùn)練的BPNN只能適用于診斷模擬電路的硬故障。在軟故障方面,一般需要基于神經(jīng)網(wǎng)絡(luò)和多種特征提取方法的綜合應(yīng)用來(lái)診斷。

        2基于模糊理論應(yīng)用的模擬電路軟故障診斷

        在一些故障診斷問(wèn)題中,模糊規(guī)則適合描述故障診斷的機(jī)理。模糊理論中的模糊運(yùn)算、模糊邏輯系統(tǒng)、模糊集合擁有對(duì)模糊信息的準(zhǔn)確應(yīng)付能力,這使得模糊理論成為故障診斷的一種有力工具。神經(jīng)網(wǎng)絡(luò)與模糊理論相結(jié)合,充分發(fā)揮了模糊理論和神經(jīng)網(wǎng)絡(luò)各自的優(yōu)點(diǎn),并以此來(lái)彌補(bǔ)各自的不足,這就是所謂的“模糊神經(jīng)網(wǎng)絡(luò)”。這種方法的基本思想是在BPNN的輸出層和輸入層中間增加一到兩層模糊層構(gòu)造模糊神經(jīng)網(wǎng)絡(luò),分別利用神經(jīng)網(wǎng)絡(luò)和模糊邏輯處理低層感知數(shù)據(jù)與描述高層的邏輯框架,這樣一來(lái)跟神經(jīng)網(wǎng)絡(luò)分類器相比,“模糊神經(jīng)網(wǎng)絡(luò)”對(duì)模擬電路軟故障診斷效果的優(yōu)勢(shì)就非常明顯。通過(guò)一個(gè)無(wú)監(jiān)督的聚類算法自組織地確定模糊規(guī)則的數(shù)目并生成一個(gè)初始的故障診斷模糊規(guī)則庫(kù),構(gòu)造了一類模糊神經(jīng)網(wǎng)絡(luò),通過(guò)訓(xùn)練調(diào)整網(wǎng)絡(luò)權(quán)值,使故障診斷模糊規(guī)則庫(kù)的分類更加精確,實(shí)現(xiàn)了電路元件的軟故障診斷。

        3基于小波變換的模擬電路軟故障診斷

        小波變換是一種新的變換分析方法,它繼承和發(fā)展了短時(shí)傅立葉變換局部化的思想,同時(shí)又克服了窗口大小不隨頻率變化等缺點(diǎn),能夠提供一個(gè)隨頻率改變的"時(shí)間-頻率"窗口,是進(jìn)行信號(hào)時(shí)頻分析和處理的理想工具。它的主要特點(diǎn)是通過(guò)變換能夠充分突出問(wèn)題某些方面的特征,能對(duì)時(shí)間(空間)頻率的局部化分析,通過(guò)伸縮平移運(yùn)算對(duì)信號(hào)(函數(shù))逐步進(jìn)行多尺度細(xì)化,最終達(dá)到高頻處時(shí)間細(xì)分,低頻處頻率細(xì)分,能自動(dòng)適應(yīng)時(shí)頻信號(hào)分析的要求,從而可聚焦到信號(hào)的任意細(xì)節(jié),解決了Fourier變換的困難問(wèn)題,成為繼Fourier變換以來(lái)在科學(xué)方法上的重大突破。若滿足時(shí),則由經(jīng)過(guò)伸縮和平移得到的函數(shù)成為小波函數(shù)族。小波變換具有時(shí)域局部特征,而神經(jīng)網(wǎng)絡(luò)具有魯棒性、自學(xué)習(xí)、自適性和容錯(cuò)性。如何把二者的優(yōu)勢(shì)結(jié)合起來(lái)一直是人們所關(guān)注的問(wèn)題。一種方法是用小波變換對(duì)信號(hào)進(jìn)行預(yù)處理,即以小波空間作為模式識(shí)別的特征空間,通過(guò)小波分析來(lái)實(shí)現(xiàn)信號(hào)的特征提取,然后將提取的特征向量送入神經(jīng)網(wǎng)絡(luò)處理;另一種即所謂的小波神經(jīng)網(wǎng)絡(luò)或小波網(wǎng)絡(luò)。小波神經(jīng)網(wǎng)絡(luò)是神經(jīng)網(wǎng)絡(luò)與小波理論相結(jié)合的產(chǎn)物,最早是由法國(guó)著名的信息科學(xué)研究機(jī)構(gòu)IRLSA的ZhangQinghu等人1992年提出來(lái)的。小波神經(jīng)用絡(luò)是基于小波變換而構(gòu)成的神經(jīng)網(wǎng)絡(luò)模型,即用非線性小波基取代通常的神經(jīng)元非線性激勵(lì)函數(shù)(如Sigmoid函數(shù)),把小波變換與神經(jīng)網(wǎng)絡(luò)有機(jī)地結(jié)合起來(lái),充分繼承了兩者的優(yōu)點(diǎn)。近幾年來(lái),國(guó)內(nèi)外有關(guān)小波網(wǎng)絡(luò)的研究報(bào)告層出不窮。小波與前饋神經(jīng)網(wǎng)絡(luò)是小波網(wǎng)絡(luò)的主要研究方向。小波還可以與其他類型的神經(jīng)網(wǎng)絡(luò)結(jié)合,例如Kohonen網(wǎng)絡(luò)對(duì)信號(hào)做自適應(yīng)小波分解。

        由于神經(jīng)網(wǎng)絡(luò)、小波變換、模糊理論在當(dāng)今的發(fā)展上還不是很完善,例如在診斷中,模糊度該如何準(zhǔn)確地定量化,對(duì)小波變換之后故障信號(hào)進(jìn)行怎樣構(gòu)造能體現(xiàn)故障類別的特征等,因此這些基于神經(jīng)網(wǎng)絡(luò)的診斷方法或多或少地存在一些局限性。一般來(lái)說(shuō),神經(jīng)網(wǎng)絡(luò)方法的長(zhǎng)處并不是提高診斷精度,而且無(wú)論運(yùn)用什么方法,在選取狀態(tài)特征參量和確定電路故障集方面,傳統(tǒng)的故障診斷方法仍然具有理論上的指導(dǎo)意義。所以,抽取合理的故障特征比構(gòu)造合適的神經(jīng)網(wǎng)絡(luò)更為重要。

        參考文獻(xiàn):

        [1]梁戈超,何怡剛,朱彥卿.基于模糊神經(jīng)網(wǎng)絡(luò)融合遺傳算法的模擬電路故障診斷法[J].電路與系統(tǒng)學(xué)報(bào),2004,9(2):54-57.

        [2]譚陽(yáng)紅,何怡剛.模擬電路故障診斷的小波方法[J].電工技術(shù)學(xué)報(bào),2005,20(8):89-93.

        第3篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        [關(guān)鍵詞]遺傳算法 灰色系統(tǒng) 專家系統(tǒng) 模糊控制 小波分析

        一、前言

        神經(jīng)網(wǎng)絡(luò)最早的研究20世紀(jì)40年代心理學(xué)家Mcculloch和數(shù)學(xué)家Pitts合作提出的,他們提出的MP模型拉開(kāi)了神經(jīng)網(wǎng)絡(luò)研究的序幕。神經(jīng)網(wǎng)絡(luò)的發(fā)展大致經(jīng)過(guò)三個(gè)階段:1947~1969年為初期,在這期間科學(xué)家們提出了許多神經(jīng)元模型和學(xué)習(xí)規(guī)則, 如MP模型、HEBB學(xué)習(xí)規(guī)則和感知器等;1970~1986年為過(guò)渡期,這個(gè)期間神經(jīng)網(wǎng)絡(luò)研究經(jīng)過(guò)了一個(gè)低潮,繼續(xù)發(fā)展。在此期間,科學(xué)家們做了大量的工作,如Hopfield教授對(duì)網(wǎng)絡(luò)引入能量函數(shù)的概念,給出了網(wǎng)絡(luò)的穩(wěn)定性判據(jù),提出了用于聯(lián)想記憶和優(yōu)化計(jì)算的途徑。1984年,Hiton教授提出Boltzman機(jī)模型。1986年Kumelhart等人提出誤差反向傳播神經(jīng)網(wǎng)絡(luò),簡(jiǎn)稱BP網(wǎng)絡(luò)。目前,BP網(wǎng)絡(luò)已成為廣泛使用的網(wǎng)絡(luò);1987年至今為發(fā)展期,在此期間,神經(jīng)網(wǎng)絡(luò)受到國(guó)際重視,各個(gè)國(guó)家都展開(kāi)研究,形成神經(jīng)網(wǎng)絡(luò)發(fā)展的另一個(gè)。神經(jīng)網(wǎng)絡(luò)具有以下優(yōu)點(diǎn):

        (1) 具有很強(qiáng)的魯棒性和容錯(cuò)性,因?yàn)樾畔⑹欠植假A于網(wǎng)絡(luò)內(nèi)的神經(jīng)元中。

        (2) 并行處理方法,使得計(jì)算快速。

        (3) 自學(xué)習(xí)、自組織、自適應(yīng)性,使得網(wǎng)絡(luò)可以處理不確定或不知道的系統(tǒng)。

        (4) 可以充分逼近任意復(fù)雜的非線性關(guān)系。

        (5) 具有很強(qiáng)的信息綜合能力,能同時(shí)處理定量和定性的信息,能很好地協(xié)調(diào)多種輸入信息關(guān)系,適用于多信息融合和多媒體技術(shù)。

        二、神經(jīng)網(wǎng)絡(luò)應(yīng)用現(xiàn)狀

        神經(jīng)網(wǎng)絡(luò)以其獨(dú)特的結(jié)構(gòu)和處理信息的方法,在許多實(shí)際應(yīng)用領(lǐng)域中取得了顯著的成效,主要應(yīng)用如下:

        (1) 圖像處理。對(duì)圖像進(jìn)行邊緣監(jiān)測(cè)、圖像分割、圖像壓縮和圖像恢復(fù)。

        (2) 信號(hào)處理。能分別對(duì)通訊、語(yǔ)音、心電和腦電信號(hào)進(jìn)行處理分類;可用于海底聲納信號(hào)的檢測(cè)與分類,在反潛、掃雷等方面得到應(yīng)用。

        (3) 模式識(shí)別。已成功應(yīng)用于手寫(xiě)字符、汽車牌照、指紋和聲音識(shí)別,還可用于目標(biāo)的自動(dòng)識(shí)別和定位、機(jī)器人傳感器的圖像識(shí)別以及地震信號(hào)的鑒別等。

        (4) 機(jī)器人控制。對(duì)機(jī)器人眼手系統(tǒng)位置進(jìn)行協(xié)調(diào)控制,用于機(jī)械手的故障診斷及排除、智能自適應(yīng)移動(dòng)機(jī)器人的導(dǎo)航。

        (5) 衛(wèi)生保健、醫(yī)療。比如通過(guò)訓(xùn)練自主組合的多層感知器可以區(qū)分正常心跳和非正常心跳、基于BP網(wǎng)絡(luò)的波形分類和特征提取在計(jì)算機(jī)臨床診斷中的應(yīng)用。

        (6) 焊接領(lǐng)域。國(guó)內(nèi)外在參數(shù)選擇、質(zhì)量檢驗(yàn)、質(zhì)量預(yù)測(cè)和實(shí)時(shí)控制方面都有研究,部分成果已得到應(yīng)用。

        (7) 經(jīng)濟(jì)。能對(duì)商品價(jià)格、股票價(jià)格和企業(yè)的可信度等進(jìn)行短期預(yù)測(cè)。

        (8) 另外,在數(shù)據(jù)挖掘、電力系統(tǒng)、交通、軍事、礦業(yè)、農(nóng)業(yè)和氣象等方面亦有應(yīng)用。

        三、神經(jīng)網(wǎng)絡(luò)發(fā)展趨勢(shì)及研究熱點(diǎn)

        1.神經(jīng)網(wǎng)絡(luò)研究動(dòng)向

        神經(jīng)網(wǎng)絡(luò)雖已在許多領(lǐng)域應(yīng)用中取得了廣泛的成功,但其發(fā)展還不十分成熟,還有一些問(wèn)題需進(jìn)一步研究。

        (1) 神經(jīng)計(jì)算的基礎(chǔ)理論框架以及生理層面的研究仍需深入。這方面的工作雖然很困難,但為了神經(jīng)計(jì)算的進(jìn)一步發(fā)展卻是非做不可的。

        (2) 除了傳統(tǒng)的多層感知機(jī)、徑向基函數(shù)網(wǎng)絡(luò)、自組織特征映射網(wǎng)絡(luò)、自適應(yīng)諧振理論網(wǎng)絡(luò)、模糊神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)之外,一些新的模型和結(jié)構(gòu)很值得關(guān)注,例如最近興起的脈沖神經(jīng)網(wǎng)絡(luò)(spiking neural network)和支持向量機(jī)(support vector machine)。

        (3) 神經(jīng)計(jì)算技術(shù)與其他技術(shù)尤其是進(jìn)化計(jì)算技術(shù)的結(jié)合以及由此而來(lái)的混合方法和混合系統(tǒng),正成為一大研究熱點(diǎn)。

        (4) 增強(qiáng)神經(jīng)網(wǎng)絡(luò)的可理解性是神經(jīng)網(wǎng)絡(luò)界需要解決的一個(gè)重要問(wèn)題。這方面的工作在今后若干年中仍然會(huì)是神經(jīng)計(jì)算和機(jī)器學(xué)習(xí)界的一個(gè)研究熱點(diǎn)。

        (5) 神經(jīng)網(wǎng)絡(luò)的應(yīng)用領(lǐng)域?qū)⒉粩鄶U(kuò)大,在未來(lái)的幾年中有望在一些領(lǐng)域取得更大的成功,特別是多媒體技術(shù)、醫(yī)療、金融、電力系統(tǒng)等領(lǐng)域。

        2.研究熱點(diǎn)

        (1)神經(jīng)網(wǎng)絡(luò)與遺傳算法的結(jié)合。遺傳算法與神經(jīng)網(wǎng)絡(luò)的結(jié)合主要體現(xiàn)在以下幾個(gè)方面:網(wǎng)絡(luò)連接權(quán)重的進(jìn)化訓(xùn)練;網(wǎng)絡(luò)結(jié)構(gòu)的進(jìn)化計(jì)算;網(wǎng)絡(luò)結(jié)構(gòu)和連接權(quán)重的同時(shí)進(jìn)化;訓(xùn)練算法的進(jìn)化設(shè)計(jì)?;谶M(jìn)化計(jì)算的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)和實(shí)現(xiàn)已在眾多領(lǐng)域得到應(yīng)用,如模式識(shí)別、機(jī)器人控制、財(cái)政等,并取得了較傳統(tǒng)神經(jīng)網(wǎng)絡(luò)更好的性能和結(jié)果。但從總體上看,這方面研究還處于初期階段,理論方法有待于完善規(guī)范,應(yīng)用研究有待于加強(qiáng)提高。神經(jīng)網(wǎng)絡(luò)與進(jìn)化算法相結(jié)合的其他方式也有待于進(jìn)一步研究和挖掘。

        (2)神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)的結(jié)合?;疑到y(tǒng)理論是一門(mén)極有生命力的系統(tǒng)科學(xué)理論,自1982年華中理工大學(xué)的鄧聚龍教授提出灰色系統(tǒng)后迅速發(fā)展,以初步形成以灰色關(guān)聯(lián)空間為基礎(chǔ)的分析體系,以灰色模型為主體的模型體系,以灰色過(guò)程及其生存空間為基礎(chǔ)與內(nèi)的方法體系,以系統(tǒng)分析、建模、預(yù)測(cè)、決策、控制、評(píng)估為綱的技術(shù)體系。目前,國(guó)內(nèi)外對(duì)灰色系統(tǒng)的理論和應(yīng)用研究已經(jīng)廣泛開(kāi)展,受到學(xué)者的普遍關(guān)注。灰色系統(tǒng)理論在在處理不確定性問(wèn)題上有其獨(dú)到之處,并能以系統(tǒng)的離散時(shí)序建立連續(xù)的時(shí)間模型,適合于解決無(wú)法用傳統(tǒng)數(shù)字精確描述的復(fù)雜系統(tǒng)問(wèn)題。

        神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)的結(jié)合方式有:(1) 神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)簡(jiǎn)單結(jié)合;(2) 串聯(lián)型結(jié)合;(3) 用神經(jīng)網(wǎng)絡(luò)增強(qiáng)灰色系統(tǒng);(4) 用灰色網(wǎng)絡(luò)輔助構(gòu)造神經(jīng)網(wǎng)絡(luò);(5) 神經(jīng)網(wǎng)絡(luò)與灰色系統(tǒng)的完全融合。

        (3)神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的結(jié)合。基于神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的混合系統(tǒng)的基本出發(fā)點(diǎn)立足于將復(fù)雜系統(tǒng)分解成各種功能子系統(tǒng)模塊,各功能子系統(tǒng)模塊分別由神經(jīng)網(wǎng)絡(luò)或?qū)<蚁到y(tǒng)實(shí)現(xiàn)。其研究的主要問(wèn)題包括:混合專家系統(tǒng)的結(jié)構(gòu)框架和選擇實(shí)現(xiàn)功能子系統(tǒng)方式的準(zhǔn)則兩方面。由于該混合系統(tǒng)從根本上拋開(kāi)了神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)的技術(shù)限制,是當(dāng)前研究的熱點(diǎn)。把粗集神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)用于醫(yī)學(xué)診斷,表明其相對(duì)于傳統(tǒng)方法的優(yōu)越性。

        (4)神經(jīng)網(wǎng)絡(luò)與模糊邏輯的結(jié)合

        模糊邏輯是一種處理不確定性、非線性問(wèn)題的有力工具。它比較適合于表達(dá)那些模糊或定性的知識(shí),其推理方式比較類似于人的思維方式,這都是模糊邏輯的優(yōu)點(diǎn)。但它缺乏有效的自學(xué)習(xí)和自適應(yīng)能力。

        而將模糊邏輯與神經(jīng)網(wǎng)絡(luò)結(jié)合,則網(wǎng)絡(luò)中的各個(gè)結(jié)點(diǎn)及所有參數(shù)均有明顯的物理意義,因此這些參數(shù)的初值可以根據(jù)系統(tǒng)的模糊或定性的知識(shí)來(lái)加以確定,然后利用學(xué)習(xí)算法可以很快收斂到要求的輸入輸出關(guān)系,這是模糊神經(jīng)網(wǎng)絡(luò)比單純的神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)所在。同時(shí),由于它具有神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),因而參數(shù)的學(xué)習(xí)和調(diào)整比較容易,這是它比單純的模糊邏輯系統(tǒng)的優(yōu)點(diǎn)所在。模糊神經(jīng)網(wǎng)絡(luò)控制已成為一種趨勢(shì),它能夠提供更加有效的智能行為、學(xué)習(xí)能力、自適應(yīng)特點(diǎn)、并行機(jī)制和高度靈活性,使其能夠更成功地處理各種不確定的、復(fù)雜的、不精確的和近似的控制問(wèn)題。

        模糊神經(jīng)控制的未來(lái)研究應(yīng)集中于以下幾個(gè)方面:

        (1) 研究模糊邏輯與神經(jīng)網(wǎng)絡(luò)的對(duì)應(yīng)關(guān)系,將對(duì)模糊

        控制器的調(diào)整轉(zhuǎn)化為等價(jià)的神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)過(guò)程,用等價(jià)的模糊邏輯來(lái)初始化神經(jīng)網(wǎng)絡(luò);

        (2) 完善模糊神經(jīng)控制的學(xué)習(xí)算法,以提高控制算法的速度與性能,可引入遺傳算法、BC算法中的模擬退火算法等,以提高控制性能;

        (3) 模糊控制規(guī)則的在線優(yōu)化,可提高控制器的實(shí)時(shí)性與動(dòng)態(tài)性能;

        (4) 需深入研究系統(tǒng)的穩(wěn)定性、能控性、能觀性以及平衡吸引子、混沌現(xiàn)象等非線性動(dòng)力學(xué)特性。

        關(guān)于神經(jīng)網(wǎng)絡(luò)與模糊邏輯相結(jié)合的研究已有很多,比如,用于氬弧焊、機(jī)器人控制等。

        (5)神經(jīng)網(wǎng)絡(luò)與小波分析的結(jié)合

        小波變換是對(duì)Fourier分析方法的突破。它不但在時(shí)域和頻域同時(shí)具有良好的局部化性質(zhì),而且對(duì)低頻信號(hào)在頻域和對(duì)高頻信號(hào)在時(shí)域里都有很好的分辨率,從而可以聚集到對(duì)象的任意細(xì)節(jié)。

        利用小波變換的思想初始化小波網(wǎng)絡(luò),并對(duì)學(xué)習(xí)參數(shù)加以有效約束,采用通常的隨機(jī)梯度法分別對(duì)一維分段函數(shù)、二維分段函數(shù)和實(shí)際系統(tǒng)中汽輪機(jī)壓縮機(jī)的數(shù)據(jù)做了仿真試驗(yàn),并與神經(jīng)網(wǎng)絡(luò)、小波分解的建模做了比較,說(shuō)明了小波網(wǎng)絡(luò)在非線性系統(tǒng)黑箱建模中的優(yōu)越性。小波神經(jīng)網(wǎng)絡(luò)用于機(jī)器人的控制,表明其具有更快的收斂速度和更好的非線性逼近能力。

        四、結(jié)論

        經(jīng)過(guò)半個(gè)多世紀(jì)的發(fā)展,神經(jīng)網(wǎng)絡(luò)理論在模式識(shí)別、自動(dòng)控制、信號(hào)處理、輔助決策、人工智能等眾多研究領(lǐng)域取得了廣泛的成功,但其理論分析方法和設(shè)計(jì)方法還有待于進(jìn)一步發(fā)展。相信隨著神經(jīng)網(wǎng)絡(luò)的進(jìn)一步發(fā)展,其將在工程應(yīng)用中發(fā)揮越來(lái)越大的作用。

        參考文獻(xiàn):

        [1]張?jiān)?模糊數(shù)學(xué)在自動(dòng)化技術(shù)中的應(yīng)用[M].清華大學(xué)出版社,1997.

        [2]李士勇.模糊控制?神經(jīng)控制和智能控制論[M].哈爾濱工業(yè)大學(xué)出版,1996.250-387.

        [3]謝聯(lián)峻.模糊控制在列車自動(dòng)駕駛中的應(yīng)用[J].自動(dòng)化與儀器儀表,1999,(4).

        [4]Collier W C,Weiland,R J Smart Carts,Smart Highways[J].IEEE Spec-trum,1994,31(4):27-33.

        [5]Hatwal H,Mikulcik E C.some Inverse Solutions to an Automobile Path Tracking Problem with Input Control of Steeringand Breaks,Ve-hicle system Dynamics,1986,(15):61-71.

        [6]Kosuge K,F(xiàn)ukuda T,Asada H.Acquisition if Human Skills for Robotic System[C].In:Proc IEEE Int Symp On Intelligen Control,1991.469-489.

        [7]王小平,曹立明.遺傳算法―理論、應(yīng)用與軟件實(shí)現(xiàn).西安交通大學(xué)出版社,2002.

        [8]Maniezzo V.Genetic evolution of the topologh and weight distribution

        of neural network[J].IEEE Trans on Neural Network,1994,5(1)35-67.

        [9]Harrald P G,Kamstra M.Evolving artificial neural networks to combine financial forecase[J].IEEE Trans on Evol Computer ,1997,1(1):39-54.

        [10]鄧聚龍.灰色系統(tǒng)理論教程.華中理工大學(xué)出版社,1990.

        [11]呂宏輝,鐘珞,夏紅霞.灰色系統(tǒng)與神經(jīng)網(wǎng)絡(luò)融合技術(shù)探索.微機(jī)發(fā)展,2000,23(4):67-109.

        第4篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        關(guān)鍵詞:BP 神經(jīng)網(wǎng)絡(luò) 教學(xué)評(píng)價(jià) 模型構(gòu)建 評(píng)價(jià)方法

        中圖分類號(hào):TP183 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2013)06(c)-0200-01

        BP神經(jīng)網(wǎng)絡(luò)是一種單向多層前饋人工神經(jīng)網(wǎng)絡(luò)模型,可以實(shí)現(xiàn)任何復(fù)雜的、多因素、不確定和非線性的映射關(guān)系,是目前應(yīng)用最廣泛的人工神經(jīng)網(wǎng)絡(luò)模型之一。通過(guò)這種梯度下降算法不斷地修正網(wǎng)絡(luò)各層之間的連接權(quán)值和閾值,從而實(shí)現(xiàn)期望輸出值與實(shí)際輸出值之間的誤差達(dá)到最小或者小于某一個(gè)閾值[1~2]。

        本文的研究目標(biāo)是通過(guò)對(duì)現(xiàn)有評(píng)價(jià)指標(biāo)、評(píng)價(jià)方法的分析,建立有效的教學(xué)評(píng)價(jià)模型,并實(shí)現(xiàn)相應(yīng)的網(wǎng)上教學(xué)評(píng)價(jià)系統(tǒng)設(shè)計(jì)。結(jié)合BP神經(jīng)網(wǎng)絡(luò),給出了一種非線性的教學(xué)評(píng)價(jià)模型,訓(xùn)練好的BP網(wǎng)絡(luò)模型根據(jù)測(cè)評(píng)數(shù)據(jù),就可得到對(duì)評(píng)價(jià)對(duì)象的評(píng)價(jià)結(jié)果,實(shí)現(xiàn)定性與定量的有效結(jié)合。

        1 BP神經(jīng)網(wǎng)絡(luò)模型

        (1)輸入/輸出節(jié)點(diǎn)。輸入/輸出節(jié)點(diǎn)是與樣本直接相關(guān)的。根據(jù)沈陽(yáng)工業(yè)大學(xué)教學(xué)質(zhì)量評(píng)估指標(biāo)體系,將二級(jí)評(píng)價(jià)指標(biāo)作為模型的輸入神經(jīng)元,因此系統(tǒng)的輸入層神經(jīng)元的個(gè)數(shù)為二級(jí)指標(biāo)的個(gè)數(shù)。將評(píng)價(jià)結(jié)果作網(wǎng)絡(luò)的輸出,輸出層神經(jīng)元個(gè)數(shù)為1。

        (2)層數(shù)。由于BP網(wǎng)絡(luò)的功能實(shí)際上是通過(guò)網(wǎng)絡(luò)輸入到網(wǎng)絡(luò)輸出的計(jì)算來(lái)完成的,因此隱含層數(shù)越多,神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)速度就越慢。但是只含有一個(gè)隱含層的BP網(wǎng)絡(luò)就可以逼近任意的非線性函數(shù)。因此,本文選取結(jié)構(gòu)相對(duì)簡(jiǎn)單的3層BP網(wǎng)絡(luò),即隱含層只有一個(gè)。

        (3)隱含層神經(jīng)元個(gè)數(shù)。隱含層單元個(gè)數(shù)與問(wèn)題的要求以及輸入輸出單元個(gè)數(shù)有直接的關(guān)系。隱層單元過(guò)多將會(huì)導(dǎo)致神經(jīng)網(wǎng)絡(luò)訓(xùn)練時(shí)間過(guò)長(zhǎng)、誤差不易控制及容錯(cuò)性差等問(wèn)題。本文采用公式2.1計(jì)算得出隱含層神經(jīng)元個(gè)數(shù)。

        4)激活函數(shù) BP網(wǎng)絡(luò)的非線性逼近能力是通過(guò)S型的激活函數(shù)來(lái)體現(xiàn)出來(lái)的,所以隱含層中一般采用S型的激活函數(shù),輸出層的激活函數(shù)可以采用線性或S型[3]。S型激活函數(shù)為

        該函數(shù)值在[-1,1]范圍內(nèi)變化很劇烈,而超出這個(gè)范圍即處于不靈敏區(qū),變化則相當(dāng)平緩。因此為使得進(jìn)入不靈敏區(qū)的誤差函數(shù)有所改變,迅速退出不靈敏區(qū),保證訓(xùn)練網(wǎng)絡(luò)的快速性,盡可能使所有輸入值都在靈敏變化段中,一般需在該公式中引進(jìn)參數(shù)。本文的神經(jīng)網(wǎng)絡(luò)算法即在此部分進(jìn)行改進(jìn)。

        2 基于BP神經(jīng)網(wǎng)絡(luò)的教學(xué)評(píng)價(jià)模型構(gòu)建

        本文由公式2.1計(jì)算得出隱含層節(jié)點(diǎn)數(shù)為4(這里考慮了下述16個(gè)指標(biāo)可以分為4組)。(見(jiàn)表1)

        3 改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)算法描述

        網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)和訓(xùn)練數(shù)據(jù)確定之后,總誤差函數(shù)E的性質(zhì)特征就完全由激活函數(shù)f決定了。改進(jìn)激活函數(shù),可以改變誤差曲面,盡量減少局部極小值的可能性。BP算法的激活函數(shù)一般為sigmoid型函數(shù),即。

        改進(jìn)的BP算法是對(duì)標(biāo)準(zhǔn)的S型函數(shù)引入新的參數(shù),則函數(shù)變?yōu)椋渲邢禂?shù)決定著S型函數(shù)的壓縮程度。該非線性函數(shù)滿足如下兩個(gè)條件:一是連續(xù)光滑且具有單調(diào)性;二是定義域?yàn)?,值域?yàn)椋史霞せ詈瘮?shù)要求。而且它使得激活函數(shù)曲線變得平坦,方便在或時(shí),避開(kāi)局部極小,因此該函數(shù)具有更好的函數(shù)逼近能力以及容錯(cuò)能力。

        4 仿真計(jì)算與分析

        以學(xué)生評(píng)教數(shù)據(jù)為輸入值,專家評(píng)教數(shù)據(jù)為期望輸出值,采用上述算法在Matlab下設(shè)計(jì)仿真程序?qū)P模型進(jìn)行辨識(shí),輸入層、隱含層和輸出層的結(jié)點(diǎn)數(shù)分別為16×4×1,激活函數(shù)采用變化的S型,學(xué)習(xí)率=0.99。

        通過(guò)沈陽(yáng)某大學(xué)教務(wù)處所提供的數(shù)據(jù)進(jìn)行實(shí)驗(yàn),采用10組樣本進(jìn)行網(wǎng)絡(luò)訓(xùn)練,并對(duì)10位教師進(jìn)行測(cè)評(píng)。10樣本的評(píng)價(jià)目標(biāo)和神經(jīng)網(wǎng)絡(luò)辨識(shí)分別為差(21.93),及格(44.64),及格(46.94),中(59.87),中(59.11),中(62.35),中(59.83),良(78.93),良(79.56),優(yōu)(99.12)。結(jié)果顯示,BP模型對(duì)評(píng)估的模擬結(jié)果比較精確,對(duì)整個(gè)考核的排序十分有用。因此該模型能較為準(zhǔn)確地根據(jù)各評(píng)價(jià)指標(biāo)來(lái)確定教學(xué)效果。

        5 結(jié)論

        結(jié)合國(guó)家高等教育的政策導(dǎo)向以及學(xué)校實(shí)際,建立了一個(gè)基于BP神經(jīng)網(wǎng)絡(luò)建立了教學(xué)評(píng)價(jià)模型,引用具有更好函數(shù)逼近以及容錯(cuò)能力的改進(jìn)的BP學(xué)習(xí)算法,確定指標(biāo)體系的權(quán)重,使評(píng)價(jià)結(jié)果科學(xué)合理。

        參考文獻(xiàn)

        第5篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        關(guān)鍵詞:

        中圖分類號(hào): TP391.4文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):2095-2163(2011)03-0043-04

        Analysis of Training Results based on the Selection of

        Parameters Influencing BP Neural Network

        HAN Xue

        Abstract: Pattern recognition includes two aspects : sample training and sample recognition. And sample training is the premise of sample recognition.Of course, there are lots of training samples and the samples are representative, whichis good, but not the more the better. In the process of training the neural network, it is very important how to determine various parameters that is beneficial to the training efficiency such as the weights and threshold values. This paper is aimed at the use of a simple sample for neural network training, changes parameter values for observing the training effect, thus obtains the different output results and the diagrams. Further study and comparison are carried outto find out the optimal parameter settings. And the experiment method and the conclusion are helpful for application in other identification system development.

        Key words:

        0引言

        在對(duì)BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練的過(guò)程中,很多時(shí)候,一些基本參數(shù)和訓(xùn)練函數(shù)參數(shù)是隨機(jī)生成的,但是訓(xùn)練效率并不高。對(duì)于BP神經(jīng)網(wǎng)絡(luò)所應(yīng)用的不同領(lǐng)域,這些參數(shù)的設(shè)置也有所區(qū)別。怎樣才能使得訓(xùn)練網(wǎng)絡(luò)的效率更高,就需要了解參數(shù)的變化對(duì)于訓(xùn)練結(jié)果的影響。本文要解決的問(wèn)題就是變化其中的各項(xiàng)參數(shù)值,對(duì)得到的不同訓(xùn)練結(jié)果進(jìn)行對(duì)比分析,并找出相關(guān)規(guī)律。

        1研究現(xiàn)狀

        “神經(jīng)網(wǎng)絡(luò)”的研究?jī)?nèi)容主要包括人工神經(jīng)網(wǎng)絡(luò)、生物神經(jīng)網(wǎng)絡(luò)、認(rèn)知科學(xué)和混沌。

        在研究方法上,對(duì)于神經(jīng)網(wǎng)絡(luò)的研究已經(jīng)收獲了很多不同的研究方法,比較重要且已有一定成果的研究有多層網(wǎng)絡(luò) BP算法、Hopfield網(wǎng)絡(luò)模型、自適應(yīng)共振理論和自組織特征映射理論等。

        在研究領(lǐng)域上也可以分為理論研究和應(yīng)用研究?jī)纱蠓矫?。理論研究包括兩個(gè)方面:其一是理論上的深入研究,通過(guò)對(duì)已有算法的性能分析來(lái)探索功能更完善、效率更高的神經(jīng)網(wǎng)絡(luò)模型,包括對(duì)穩(wěn)定性、收斂性、容錯(cuò)性、魯棒性等各個(gè)性能的最優(yōu)化研究;其二是朝著智能的方向發(fā)展,利用神經(jīng)生理與認(rèn)知科學(xué)對(duì)人類思維和智能機(jī)理進(jìn)行研究。應(yīng)用研究也包含了兩個(gè)方面,分別是神經(jīng)網(wǎng)絡(luò)的軟硬件研究和神經(jīng)網(wǎng)絡(luò)在各個(gè)領(lǐng)域中應(yīng)用的研究,其中包括:模式識(shí)別、信號(hào)處理、知識(shí)工程、專家系統(tǒng)、優(yōu)化組合、機(jī)器人控制等[1]。

        BP神經(jīng)網(wǎng)絡(luò)是當(dāng)前最流行、應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型之一。但是仍存在一些缺陷,如訓(xùn)練速度較慢,所以很多學(xué)者正在尋找快速有效的BP學(xué)習(xí)算法,而且也取得了一些成效,最重要的幾種快速變體有QuickProp[Fah88]、 SuperSAB [Tol90]和共軛梯度法[Bat92][1]。

        除了收斂速度較慢之外,BP神經(jīng)網(wǎng)絡(luò)還存在一些缺點(diǎn):容易在優(yōu)化的過(guò)程中產(chǎn)生局部最優(yōu)解而不是全局最優(yōu)解;在對(duì)新樣本訓(xùn)練的同時(shí)容易遺忘舊的樣本。基于對(duì)以上缺陷的改進(jìn),目前已有了一些行之有效的解決方法。

        為了提高網(wǎng)絡(luò)訓(xùn)練速度,在調(diào)整權(quán)值時(shí)增加了動(dòng)量項(xiàng),從而對(duì)某時(shí)刻前后的梯度方向都進(jìn)行了必要的考慮;為了加快算法收斂速度,采用了自適應(yīng)學(xué)習(xí)率調(diào)節(jié)的方法,如VLBP神經(jīng)網(wǎng)絡(luò),后面的實(shí)驗(yàn)中還會(huì)進(jìn)一步比較介紹。

        目前,BP神經(jīng)網(wǎng)絡(luò)作為很重要的神經(jīng)網(wǎng)絡(luò)模型之一,在很多應(yīng)用領(lǐng)域中發(fā)揮著重要的作用,包括圖像壓縮編碼、人臉識(shí)別、分類、故障診斷、最優(yōu)預(yù)測(cè)等。

        2算法原理

        BP神經(jīng)網(wǎng)絡(luò)的基本思想是通過(guò)不斷地訓(xùn)練權(quán)值,并設(shè)有一個(gè)標(biāo)準(zhǔn)的輸出,每次訓(xùn)練以后得到的實(shí)際輸出與標(biāo)準(zhǔn)的輸出比較,設(shè)置一個(gè)最小誤差,達(dá)到這個(gè)誤差就表示網(wǎng)絡(luò)訓(xùn)練好了,否則繼續(xù)訓(xùn)練;經(jīng)過(guò)一定的訓(xùn)練次數(shù)后,若還沒(méi)有達(dá)到這個(gè)誤差標(biāo)準(zhǔn),就表示網(wǎng)絡(luò)的設(shè)置有問(wèn)題。本實(shí)驗(yàn)通過(guò)對(duì)參數(shù)的改變,尋找出最優(yōu)參數(shù)設(shè)置的規(guī)律。

        3算法實(shí)現(xiàn)

        使用matlab開(kāi)發(fā)平臺(tái),程序編寫(xiě)分為定義輸入向量和目標(biāo)向量、創(chuàng)建 BP網(wǎng)絡(luò)設(shè)置訓(xùn)練函數(shù)、初始化權(quán)值閾值、設(shè)置訓(xùn)練函數(shù)參數(shù)、訓(xùn)練神經(jīng)網(wǎng)絡(luò)五個(gè)部分。進(jìn)行對(duì)比實(shí)驗(yàn)時(shí),只需將相關(guān)參數(shù)進(jìn)行修改即可。對(duì)基本的BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練時(shí),設(shè)置基本參數(shù):權(quán)值、閾值;訓(xùn)練函數(shù)參數(shù):學(xué)習(xí)率、最后達(dá)到的均方誤差、最大步長(zhǎng)。分別對(duì)學(xué)習(xí)率、均方誤差、初始權(quán)值、初始閾值進(jìn)行修改,對(duì)比實(shí)驗(yàn)結(jié)果;基本的BP神經(jīng)網(wǎng)絡(luò)中無(wú)法對(duì)學(xué)習(xí)率實(shí)現(xiàn)事先最優(yōu),所以用VLBP神經(jīng)網(wǎng)絡(luò)進(jìn)行改進(jìn)。

        程序如下:

        netbp.trainParam.goal=0.0001//設(shè)置最后達(dá)到的均方誤差為 0.0001

        netbp.trainParam.epochs=5000 //設(shè)置最大訓(xùn)練步長(zhǎng)

        [netbp,tr]=train(netbp,p,t)

        4實(shí)驗(yàn)結(jié)果

        初始訓(xùn)練樣本的輸入設(shè)為[1;3],期望輸出設(shè)為[0.95;0.05],第一層的權(quán)值設(shè)為[1 2;-2 0],第二層的權(quán)值設(shè)為[1 1;0 -2],第一層的閾值設(shè)為[-3;1],第二層的閾值設(shè)為[2;3],學(xué)習(xí)率設(shè)為1,均方差設(shè)為0.0001。其實(shí)驗(yàn)仿真圖如圖1所示。

        4.1改變學(xué)習(xí)率

        只改變學(xué)習(xí)率的訓(xùn)練函數(shù)參數(shù)時(shí),運(yùn)行程序后的對(duì)比結(jié)果如表1所示。

        從表1中的實(shí)驗(yàn)結(jié)果可見(jiàn):在其他條件不變、學(xué)習(xí)率增大的情況下,所需的訓(xùn)練步長(zhǎng)變短,即誤差收斂速度快。但是學(xué)習(xí)率不可以無(wú)限制地增大,增大到一定程度后,誤差收斂速度將減慢,甚至有可能達(dá)不到誤差范圍內(nèi),進(jìn)入局部穩(wěn)定狀態(tài)。

        表1中的各組實(shí)驗(yàn)仿真圖如圖2-圖7所示。

        4.2改變均方差

        將均方差由原來(lái)的0.0001變?yōu)?.001后與原初始樣本參數(shù)對(duì)比結(jié)果如表2所示。

        均方差變?yōu)?.001后的仿真圖如圖8所示。

        可見(jiàn),在其他條件一樣的前提下,將最后要達(dá)到的均方誤差值設(shè)置較大時(shí),網(wǎng)絡(luò)訓(xùn)練步長(zhǎng)變短,誤差收斂速度慢些,最后的輸出結(jié)果較為精確些。

        4.3改變初始權(quán)值

        將初始權(quán)值改變后的對(duì)比結(jié)果如表3所示。

        改變初始權(quán)值后的仿真圖如圖9所示。

        可見(jiàn),后者的初始權(quán)值比較合適些,因此訓(xùn)練的時(shí)間變短,誤差收斂速度明顯快些。

        4.4改變初始閾值

        將初始閾值改變后的對(duì)比結(jié)果如表4所示。

        改變初始閾值后的仿真圖如圖10所示。

        可見(jiàn),后者的初始閾值比較合適些,因此訓(xùn)練的時(shí)間變短,誤差收斂速度明顯快些。

        4.5學(xué)習(xí)率可變的VLBP神經(jīng)網(wǎng)絡(luò)

        用最基本的 BP 算法來(lái)訓(xùn)練 BP神經(jīng)網(wǎng)絡(luò)時(shí),學(xué)習(xí)率、均方誤差、權(quán)值、閾值的設(shè)置都對(duì)網(wǎng)絡(luò)的訓(xùn)練均有影響。選取合理的參數(shù)值會(huì)有利于網(wǎng)絡(luò)的訓(xùn)練。在最基本的 BP算法中,學(xué)習(xí)率在整個(gè)訓(xùn)練過(guò)程是保持不變的。學(xué)習(xí)率過(guò)大,算法可能振蕩而不穩(wěn)定;學(xué)習(xí)率過(guò)小,則收斂速度慢,訓(xùn)練時(shí)間長(zhǎng)。而在對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練之前是無(wú)法選擇最佳學(xué)習(xí)率的。

        雖說(shuō)學(xué)習(xí)率在訓(xùn)練前無(wú)法選最優(yōu),但是在訓(xùn)練的過(guò)程中能否可變呢?因此BP神經(jīng)網(wǎng)絡(luò)的一種改進(jìn)算法VLBP可派上用場(chǎng)。也就是說(shuō),另外設(shè)置學(xué)習(xí)增量因子和學(xué)習(xí)減量因子,當(dāng)誤差以減少的方式趨于目標(biāo)時(shí),說(shuō)明修正方向正確,可以使步長(zhǎng)增加,因此學(xué)習(xí)率乘以增量因子k,使學(xué)習(xí)率增加;而修正過(guò)頭時(shí),應(yīng)減少步長(zhǎng),可以乘以減量因子k,使學(xué)習(xí)率減小。

        程序設(shè)計(jì)中加入下列語(yǔ)句:

        netbp=newff([-1 1;-1 1],[2 2],‘logsig’ ‘logsig’,‘traingdx’)

        netbp.trainParam.lr_inc=1.1//增量因子設(shè)為1.1

        netbp.trainParam.lr_dec=0.65 //減量因子設(shè)為0.65

        經(jīng)過(guò)訓(xùn)練后最后的輸出結(jié)果為[0.963 8;0.050 0],訓(xùn)練步長(zhǎng)為50,訓(xùn)練后第一層的權(quán)值為[1.004 5 2.013 5;-1.408 4 1.774 8],訓(xùn)練后第二層的權(quán)值為[0.766 9 0.768 3;-1.544 7 -2.865 0]。

        VLBP神經(jīng)網(wǎng)絡(luò)訓(xùn)練仿真圖如圖11所示。

        觀察網(wǎng)絡(luò)的收斂速度,采用學(xué)習(xí)率可變的VLBP算法要比學(xué)習(xí)率不變BP算法收斂速度提高很多。以上兩種算法都是沿著梯度最陡的下降方向修正權(quán)值,誤差減小的速度最快。

        5結(jié)束語(yǔ)

        通過(guò)上述驗(yàn)證性實(shí)驗(yàn),可以看出參數(shù)的選取對(duì)網(wǎng)絡(luò)的訓(xùn)練結(jié)果有著很大的影響,當(dāng)然BP算法還很多,但沒(méi)有一個(gè)算法適合所有 BP 網(wǎng)絡(luò)。在實(shí)際運(yùn)用時(shí),需根據(jù)網(wǎng)絡(luò)自身的特點(diǎn)、誤差要求、收斂速度要求、存儲(chǔ)空間等來(lái)做具體選擇。

        參考文獻(xiàn):

        [ 1 ] http://blog.csdn.net/zrjdds/archive/2008/01/02/2010730.a(chǎn)spx.

        [ 2 ] 陳兆乾,周志華,陳世福. 神經(jīng)計(jì)算研究現(xiàn)狀及發(fā)展趨勢(shì). 南京

        大學(xué)計(jì)算機(jī)軟件新技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,2008:3-7.

        [ 3 ] 趙艷. 神經(jīng)計(jì)算與量子神經(jīng)計(jì)算的研究綜述[J]. 計(jì)算機(jī)與信息

        第6篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        關(guān)鍵詞:模糊神經(jīng)網(wǎng)絡(luò);水環(huán)境質(zhì)量評(píng)價(jià);監(jiān)測(cè)點(diǎn)

        中圖分類號(hào):TP18 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-3044(2014)20-4813-02

        Application of Fuzzy Neural Network in Water Environmental Quality Assessment

        ZHAO Xu1 ,CHEN Li-li2

        (1.Geological and Mineral Resources of Liaoning Province Survey Institute, Shenyang 110031,China; 2.Heilongjiang Institute of Geological Survey, Harbin 150036,China)

        Abstract: In order to ensure the safety of drinking water for urban residents, the fuzziness of classification of water quality standard, introduce the fuzzy neural network theory, establish the model of water environment quality evaluation. Selects the Jilin province Baishan City baiyunfeng reservoir as a study area, by sampling selected 6 monitoring points, the evaluation of the model evaluation results and the Nemero index analysis and comparison of results. The results showed that, fuzzy neural network evaluation of water environment quality is feasible, water quality evaluation result more accurate, to break the limitations of traditional methods. The model of fuzzy neural network has strong learning ability, can improve the accuracy of groundwater quality evaluation, provided the scientific basis for the protection and management of water environment.

        Key words: fuzzy neural network; water quality evaluation; monitoring point

        我國(guó)當(dāng)前經(jīng)濟(jì)社會(huì)的發(fā)展正處在城市化、工業(yè)化、現(xiàn)代化進(jìn)程中,有效地保護(hù)和合理利用水資源,防止項(xiàng)目建設(shè)和生產(chǎn)造成的人為水資源破壞,最大限度地減少和降低對(duì)水環(huán)境的影響,保證工程項(xiàng)目的順利建設(shè)和安全運(yùn)行,促進(jìn)水資源的循環(huán)利用和生態(tài)環(huán)境的可持續(xù)維護(hù),水環(huán)境質(zhì)量科學(xué)準(zhǔn)確的評(píng)價(jià)必不可少[1]。該文綜合考慮神經(jīng)網(wǎng)絡(luò)的特點(diǎn),把模糊理論引入評(píng)價(jià)模型中,以水質(zhì)評(píng)價(jià)指標(biāo)作為模型的輸入變量建立模糊神經(jīng)網(wǎng)絡(luò),以白山市白云峰水庫(kù)為研究區(qū),評(píng)價(jià)其水環(huán)境質(zhì)量。

        1 模糊神經(jīng)網(wǎng)絡(luò)

        1974年,S.C.Lee以和E.T.Lee首次把模糊集和神經(jīng)網(wǎng)絡(luò)聯(lián)系在一起; 1985年,J.M Keller和D.Huut提出把模糊隸屬函數(shù)和感知器算法相結(jié)合。自1992年開(kāi)始,J.J.Backley發(fā)表了多篇關(guān)于混合模糊神經(jīng)網(wǎng)絡(luò)的文章,它們也反映了人們近年來(lái)的興趣點(diǎn)。

        模糊神經(jīng)網(wǎng)絡(luò)是一種新型的神經(jīng)網(wǎng)絡(luò),它是在網(wǎng)絡(luò)中引入模糊算法或模糊權(quán)系數(shù)的神經(jīng)網(wǎng)絡(luò)。模糊神經(jīng)網(wǎng)絡(luò)的特點(diǎn)在于把模糊邏輯方法和神經(jīng)網(wǎng)絡(luò)方法結(jié)合在一起[2]。目前應(yīng)用最廣泛的是模糊BP網(wǎng)絡(luò)[3],對(duì)于一個(gè)神經(jīng)元,考慮其輸入信號(hào)是以隸屬函數(shù)表示,而不是以絕對(duì)值表示,基本處理單元為非線性輸入-輸出關(guān)系,輸入層神經(jīng)元閾值為0,且[f(x)=x];而隱含層和輸出層作用函數(shù)為[f(x)=11+e-x]。

        鑒于水質(zhì)評(píng)價(jià)中水質(zhì)分級(jí)存在模糊性,水質(zhì)評(píng)價(jià)結(jié)果易受人為因素影響[4-5],因此本研究將將模糊理論中隸屬度引入水質(zhì)評(píng)價(jià)中,試圖克服傳統(tǒng)水質(zhì)評(píng)價(jià)過(guò)程中存在的問(wèn)題。按下式構(gòu)造隸屬度函數(shù)[6-7]

        式中:a、b為評(píng)價(jià)水質(zhì)樣本相鄰的上下兩級(jí)標(biāo)準(zhǔn)水質(zhì)級(jí)別;[f(x)]為標(biāo)準(zhǔn)的梯形隸屬度函數(shù)。

        2 實(shí)例

        2.1 評(píng)價(jià)因子選取

        研究區(qū)地處低山丘陵,遠(yuǎn)離居民點(diǎn),附近無(wú)大的河流或流量較大的裂隙泉。當(dāng)?shù)刈匀画h(huán)境良好。研究區(qū)氣候?qū)贉貛Т箨懶约撅L(fēng)氣候區(qū)。年平均氣溫在2.5℃左右。年最高氣溫38℃,多集中在七、八月份,晝夜溫差較大。最低氣溫可達(dá)-40℃,集中在十二月下旬至翌年二月份。年平均降雨量為800mm左右,最大凍結(jié)深度1.60m。

        根據(jù)水文局提供的水環(huán)境質(zhì)量監(jiān)測(cè)資料,本次研究選取總硬度、硝酸鹽氮、揮發(fā)酚、六價(jià)鉻、砷、鐵等指標(biāo)作為評(píng)價(jià)因子。

        2.2 模糊神經(jīng)網(wǎng)絡(luò)的應(yīng)用

        經(jīng)過(guò)標(biāo)準(zhǔn)化處理后建立6-3-1結(jié)構(gòu)的模糊神經(jīng)網(wǎng)絡(luò)。由于活化函數(shù)值域范圍在[0,1]間,故設(shè)定水環(huán)境質(zhì)量級(jí)別的目標(biāo)輸出量是0.1、0.3、0.5、0.7、0.9(如表1) 。模型本次訓(xùn)練選取學(xué)習(xí)效率[η]=0.9,動(dòng)量系數(shù)[σ]=0.5,經(jīng)過(guò)7600次迭代,網(wǎng)絡(luò)收斂,達(dá)到指定精度10-5。然后對(duì)輸出結(jié)果進(jìn)行隸屬度計(jì)算,最終確定出水質(zhì)級(jí)別,評(píng)價(jià)結(jié)果見(jiàn)表2。

        2.3 結(jié)果分析

        根據(jù)現(xiàn)有調(diào)查資料水庫(kù)目前的水化學(xué)類型為:H―Ca型水、總硬度(以CaCo3計(jì)算)124.31mg/L、PH值8.01、為弱堿性水,水質(zhì)良好,適合飲用。通過(guò)計(jì)算發(fā)現(xiàn),采用尼梅羅綜合污染指數(shù)法評(píng)價(jià)的水環(huán)境質(zhì)量并無(wú)明顯變化,而應(yīng)用模糊神經(jīng)網(wǎng)絡(luò)計(jì)算后得出的結(jié)果水環(huán)境質(zhì)量變化明顯,與現(xiàn)有實(shí)際調(diào)查情況一致。因此應(yīng)用模糊神經(jīng)網(wǎng)絡(luò)評(píng)價(jià)出的水環(huán)境質(zhì)量結(jié)果是可靠的。

        3 結(jié)論

        本文將模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用到水環(huán)境質(zhì)量評(píng)價(jià)中,它將模糊算法或模糊權(quán)系數(shù)引入到神經(jīng)網(wǎng)絡(luò)中,把模糊邏輯方法和神經(jīng)網(wǎng)絡(luò)方法結(jié)合在一起,是一種新型的神經(jīng)網(wǎng)絡(luò)??朔藗鹘y(tǒng)水環(huán)境系統(tǒng)中變量間模糊性問(wèn)題,該網(wǎng)絡(luò)具有很強(qiáng)的自適應(yīng)、自學(xué)習(xí)的能力。通過(guò)實(shí)例應(yīng)用,驗(yàn)證了模糊神經(jīng)網(wǎng)絡(luò)在水質(zhì)評(píng)價(jià)方面的應(yīng)用是可行的,結(jié)果是準(zhǔn)確可靠的,該方法具有良好的應(yīng)用前景。為保證城鎮(zhèn)居民飲水安全,及日后保護(hù)和管理水環(huán)境提供了科學(xué)依據(jù)。

        參考文獻(xiàn):

        [1] 夏軍.區(qū)域水環(huán)境及生態(tài)環(huán)境質(zhì)量評(píng)價(jià)――多級(jí)關(guān)聯(lián)評(píng)估理論與應(yīng)用[M].武漢:武漢水利電大學(xué)出版社,1999.

        [2] 陳守煜,趙瑛琪.模糊模式識(shí)別理論模型與水質(zhì)評(píng)價(jià)[J ].水利學(xué)報(bào),1991 ,6 :35 ― 401.

        [3] 尼探海,白玉慧.BP神經(jīng)網(wǎng)絡(luò)模型在地下水水質(zhì)評(píng)價(jià)中的應(yīng)用[J].系統(tǒng)工程理論與實(shí)踐,2000,(8):124-127.

        [4] 王士同,神經(jīng)模糊系統(tǒng)及其應(yīng)用[M],北京,北京航空航天大學(xué)出版社.

        [5] 雪冬,邢建.新疆河流水質(zhì)調(diào)查及評(píng)價(jià)[J].新疆環(huán)境保護(hù),2003,25(2):37-39.

        第7篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        關(guān)鍵詞:小波分析;神經(jīng)網(wǎng)絡(luò);故障定位;配電網(wǎng)

        作者簡(jiǎn)介:李曉東(1975-),男,寧夏吳忠人,寧夏電力公司吳忠供電局,助理工程師。(寧夏 吳忠 751100)

        中圖分類號(hào):TM726 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-0079(2013)26-0201-03

        配電網(wǎng)直接聯(lián)系用戶,其可靠供電能力和供電質(zhì)量既是電力企業(yè)經(jīng)濟(jì)效益的直接體現(xiàn),又對(duì)應(yīng)著不可估量的社會(huì)效益。配電網(wǎng)故障自動(dòng)定位作為配電自動(dòng)化的一個(gè)重要內(nèi)容,對(duì)提高供電可靠性有很大影響,也得到了越來(lái)越多的重視。本文在分析研究小波神經(jīng)網(wǎng)絡(luò)特征的基礎(chǔ)上利用小波的時(shí)頻分析能力與神經(jīng)網(wǎng)絡(luò)的非線性擬合能力來(lái)建立故障特征與故障點(diǎn)的映射,確定故障點(diǎn)的位置。

        一、配電網(wǎng)的故障特點(diǎn)

        配電網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)復(fù)雜,節(jié)點(diǎn)眾多且分布廣泛。負(fù)荷沿配電線路分布不均勻,而且負(fù)荷性質(zhì)也有很大差異,因此配網(wǎng)故障定位是一項(xiàng)十分艱巨的任務(wù)。配電網(wǎng)發(fā)生故障的幾率遠(yuǎn)大于輸電網(wǎng),因?yàn)榕潆娋W(wǎng)的設(shè)備為分散分布,采集信號(hào)相對(duì)困難,而且信號(hào)傳輸?shù)木嚯x越遠(yuǎn)越容易發(fā)生畸變。配電網(wǎng)直接面向廣大的用戶,最易受到用戶端多種多樣不確定因素的影響,所以配電網(wǎng)的故障頻率及操作頻率都較高,運(yùn)行方式和對(duì)應(yīng)的網(wǎng)絡(luò)拓?fù)浣?jīng)常發(fā)生變化。[1]同時(shí),配電網(wǎng)具有閉環(huán)設(shè)計(jì)開(kāi)環(huán)運(yùn)行的特點(diǎn),有時(shí)會(huì)出現(xiàn)短暫的閉環(huán)運(yùn)行,給故障定位帶來(lái)困難。

        二、神經(jīng)網(wǎng)絡(luò)在配網(wǎng)故障診斷中的應(yīng)用原理

        人工神經(jīng)網(wǎng)絡(luò)(ANN)是一種連接機(jī)制模型,它是由大量人工神經(jīng)元廣泛互聯(lián)而成的網(wǎng)絡(luò),是在微觀結(jié)構(gòu)上模擬人的認(rèn)識(shí)能力,其知識(shí)處理所模擬的是人的經(jīng)驗(yàn)思維機(jī)制,決策時(shí)它依據(jù)的是經(jīng)驗(yàn),而不是一組規(guī)劃,特別是在缺乏清楚表達(dá)規(guī)則或精確數(shù)據(jù)時(shí)神經(jīng)網(wǎng)絡(luò)可產(chǎn)生合理的輸出結(jié)果。ANN的最大特點(diǎn)是依靠并行調(diào)節(jié)人工神經(jīng)元之間的連接權(quán)值來(lái)隱含地處理問(wèn)題,具有很強(qiáng)的自適應(yīng)和自學(xué)習(xí)能力、非線性映射能力、魯棒性和容錯(cuò)能力。

        應(yīng)用神經(jīng)網(wǎng)絡(luò)進(jìn)行電力系統(tǒng)報(bào)警處理和故障定位能在保護(hù)裝置誤動(dòng)、數(shù)據(jù)丟失以及出現(xiàn)其他未考慮的報(bào)警類型時(shí)也能給出較精確的定位結(jié)果。[2,3]還可以結(jié)合小波分析比較精確地定位出故障位置進(jìn)行隔離。

        由于神經(jīng)網(wǎng)絡(luò)自身具有很多的優(yōu)點(diǎn),應(yīng)用現(xiàn)代數(shù)學(xué)工具通過(guò)準(zhǔn)確地提取故障電氣量特征信息作為神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行訓(xùn)練來(lái)提高神經(jīng)網(wǎng)絡(luò)的定位性能將是一個(gè)很好的發(fā)展方向。

        基于神經(jīng)網(wǎng)絡(luò)的診斷系統(tǒng)結(jié)構(gòu)圖如圖1所示。

        三、小波變換

        小波變換是繼Fourier變換之后又一有效的時(shí)頻分析方法,可以在一個(gè)時(shí)間和頻域的局域變換所以能有效地從信號(hào)中提取信息,可以對(duì)信號(hào)進(jìn)行多尺度的細(xì)化分析。

        小電流接地系統(tǒng)發(fā)生單相接地故障時(shí),暫態(tài)接地電容電流幅值經(jīng)常大于穩(wěn)態(tài)時(shí)的幾倍到幾十倍,補(bǔ)償?shù)碾姼须娏饕矔?huì)增大。[4]這種情況下小波變換可以將暫態(tài)信號(hào)映射到由小波伸縮而成的一組基函數(shù)上。該函數(shù)具有很好地頻帶分割性,再根據(jù)小電流接地系統(tǒng)發(fā)生故障時(shí)零序電流分量的特點(diǎn),即故障線路上的電流幅值比非故障線路幅值大得多且極性相反這一特征來(lái)進(jìn)行故障點(diǎn)的定位。

        四、小波神經(jīng)網(wǎng)絡(luò)

        1.小波神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)

        小波函數(shù)作為神經(jīng)網(wǎng)絡(luò)的激勵(lì)函數(shù)與普通神經(jīng)網(wǎng)絡(luò)的激勵(lì)函數(shù)在本質(zhì)上是一致的,但是小波神經(jīng)網(wǎng)絡(luò)只要尺度、位移以及權(quán)重的初始值設(shè)置得當(dāng),其函數(shù)逼近的效果更優(yōu)于簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)。

        在文獻(xiàn)[5]中對(duì)小電流接地系統(tǒng)單相接地故障暫態(tài)信號(hào)用prony方法進(jìn)行分析時(shí),已證實(shí)故障點(diǎn)位置不同時(shí)對(duì)應(yīng)的故障暫態(tài)信號(hào)的特征分量也不同,它們之間存在著特定的對(duì)應(yīng)關(guān)系。根據(jù)這個(gè)原理就可以利用小波分析來(lái)獲得故障暫態(tài)信號(hào)定時(shí)頻窗特征,將它映射到距離平面上實(shí)現(xiàn)故障定位。

        小波神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)如圖2所示,共有四層,分別為輸入層、小波變換層、隱含層、輸出層。小波變換層選取的神經(jīng)元激勵(lì)函數(shù)為Morlet小波:

        則在函數(shù)空間L2(R)中,一個(gè)信號(hào)f(t)的小波變換:

        對(duì)網(wǎng)絡(luò)的輸出并不僅僅是簡(jiǎn)單的加權(quán)求和,而是先對(duì)網(wǎng)絡(luò)隱含層小波節(jié)點(diǎn)的輸出值進(jìn)行加權(quán)求和,再通過(guò)Sigmoid函數(shù)變換,最終得到的網(wǎng)絡(luò)輸出,有利于處理分類問(wèn)題,[6,7]同時(shí)降低訓(xùn)練過(guò)程中發(fā)散的可能性。

        小電流單相接地故障檢測(cè)系統(tǒng)的小波神經(jīng)網(wǎng)絡(luò)模型如圖2所示,輸入層的每一節(jié)點(diǎn)對(duì)應(yīng)故障暫態(tài)時(shí)序序列,輸出包含的單個(gè)神經(jīng)元,其值反映的是故障點(diǎn)的位置。

        2.小波神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)算法

        進(jìn)行訓(xùn)練時(shí)需要在權(quán)值和閾值的修正算法中加入動(dòng)量項(xiàng),利用前一步得到的修正值來(lái)平滑學(xué)習(xí)路徑,防止陷入局部極小值,加速學(xué)習(xí)速度。[8]當(dāng)逐個(gè)對(duì)樣本進(jìn)行訓(xùn)練時(shí)會(huì)引起權(quán)值與閾值修正時(shí)發(fā)生振蕩,為避免這種情況的發(fā)生可以采用成批訓(xùn)練方法。

        在式(1)中,當(dāng)a>0時(shí),信號(hào)f(t)可離散化fN(i),式(1)變?yōu)椋?/p>

        式子中,N為電流序列點(diǎn)總和,為信號(hào)的時(shí)間窗寬度。

        前向運(yùn)算:輸入采樣時(shí)間序列,小波變換層的輸出為:

        按照上式的算法,分別計(jì)算出小波變換層的輸出量,其中j為小波變換層的總節(jié)點(diǎn)數(shù)。

        隱層的輸入矢量,其中K表示隱層節(jié)點(diǎn)個(gè)數(shù)。;隱含層輸出矢量:;故障距離輸出。

        給定P(P=1,2,3……p)組輸入輸出樣本,學(xué)習(xí)率為,動(dòng)量因子是目標(biāo)誤差函數(shù)為:

        式中:——輸出層第n個(gè)節(jié)點(diǎn)的期望輸出;——網(wǎng)絡(luò)實(shí)際輸出。

        算法要實(shí)現(xiàn)的目標(biāo)就是不斷調(diào)整網(wǎng)絡(luò)的各項(xiàng)參數(shù),使最終的誤差函數(shù)獲得最小值。

        隱含層與輸出層之間的權(quán)值調(diào)整式:

        輸入層與隱層結(jié)點(diǎn)之間的權(quán)值調(diào)整式:

        伸縮因子調(diào)整式:

        平移因子調(diào)整式:

        五、小波與神經(jīng)網(wǎng)絡(luò)在配網(wǎng)故障診斷中的應(yīng)用

        1.系統(tǒng)整體設(shè)計(jì)

        本文采用EMTP/ATP軟件進(jìn)行仿真。設(shè)計(jì)系統(tǒng)為中性點(diǎn)不接地系統(tǒng),母線電壓等級(jí)為35kV,仿真時(shí)間是0.1S,故障發(fā)生時(shí)間是0.05S,采樣頻率是4000Hz,可充分滿足暫態(tài)電容電流自由振動(dòng)頻率的要求;線路參數(shù):正序阻抗;正序容納;零序阻抗;零序容納。圖3為小電流接地系統(tǒng)。

        變化故障點(diǎn)位置和接地電阻形成的學(xué)習(xí)故障模式集為:在配電網(wǎng)全程線路上選擇故障點(diǎn),是距離變化的步長(zhǎng),;故障過(guò)渡電阻。

        2.故障定位效果分析

        為了較好地檢測(cè)訓(xùn)練后神經(jīng)網(wǎng)絡(luò)的真實(shí)定位效果,需要選取網(wǎng)絡(luò)的非學(xué)習(xí)樣本來(lái)檢驗(yàn)。選取故障點(diǎn)故障過(guò)渡電阻。進(jìn)行組合20×2=40個(gè)測(cè)試故障模式,按照與形成學(xué)習(xí)樣本相同的預(yù)處理方法形成輸入矢量集合,經(jīng)過(guò)網(wǎng)絡(luò)的前向運(yùn)算得到故障的定位結(jié)果。

        接地電阻時(shí),故障定位結(jié)果,如表1所示。

        接地電阻時(shí),故障定位結(jié)果,如表2所示。

        由表1和表2可得,經(jīng)過(guò)訓(xùn)練后的小波神經(jīng)網(wǎng)絡(luò)可以很好地?cái)M合輸入矢量和故障點(diǎn)的位置對(duì)應(yīng)關(guān)系。對(duì)于神經(jīng)網(wǎng)絡(luò)測(cè)試的樣本,該誤差基本在1%以下,具有較滿意的定位結(jié)果。此故障定位方案之所以精確是因?yàn)閮煞矫娴脑颍阂皇切‰娏鹘拥叵到y(tǒng)通常情況下是直接面向用戶的,為單電源系統(tǒng),雖然具有復(fù)雜多變的運(yùn)行方式,但大多數(shù)運(yùn)行參數(shù)可知,該方案在一定程度上降低了運(yùn)行參數(shù)的模糊性;二是小波神經(jīng)網(wǎng)絡(luò)在故障之后暫態(tài)高頻信息的提取與應(yīng)用是定位原理的關(guān)鍵所在。因此,經(jīng)過(guò)訓(xùn)練后的小波神經(jīng)網(wǎng)絡(luò)故障定位精確可靠。

        六、結(jié)論

        本文利用小波神經(jīng)網(wǎng)絡(luò)的特點(diǎn)解決配電網(wǎng)故障定位中的問(wèn)題,小波神經(jīng)網(wǎng)絡(luò)具備小波與神經(jīng)網(wǎng)絡(luò)共同的特點(diǎn),既具有對(duì)非平穩(wěn)隨機(jī)信號(hào)所具有的優(yōu)越的時(shí)頻局部特性又具有非線性擬合能力,具有充分的理論依據(jù)。在對(duì)所建立的小電流接地系統(tǒng)進(jìn)行仿真的結(jié)果分析可知,該定位方案精確度較高、方便可靠。

        參考文獻(xiàn):

        [1]郭三中.基于小波神經(jīng)網(wǎng)絡(luò)的配電網(wǎng)故障定位研究J].電力系統(tǒng)自動(dòng)化,2010,(12):27-30.

        [2]季濤,孫同景,薛永端.配電網(wǎng)故障定位技術(shù)現(xiàn)狀與展望[J].繼電器,2005,33(24):32-37.

        [3]張振飛,夏利民.基于神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷智能方法[J].信息技術(shù),2008,(8):35-55.

        [4]李振然.基于小波變換與BP神經(jīng)網(wǎng)絡(luò)相結(jié)合的配電網(wǎng)單相接地故障定位方法[J].繼電器,2004,32(9):24-26.

        [5]郜洪亮,楊學(xué)昌.一種配電線路單相接地故障測(cè)距算法[J].清華大學(xué)學(xué)報(bào)(自然科學(xué)版),1999,39(9):33-36.

        [6]李玉,潘亞平,魏海平.小波神經(jīng)網(wǎng)絡(luò)及其研究進(jìn)展[J].科技信息,2006,(9):24-25.

        第8篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        關(guān)鍵詞:神經(jīng)網(wǎng)絡(luò);全要素生產(chǎn)率;預(yù)測(cè);生產(chǎn)物流

        中圖分類號(hào):F513.2 文獻(xiàn)標(biāo)識(shí)碼:A

        未來(lái)經(jīng)濟(jì)發(fā)展?fàn)顩r一直是人們探討的問(wèn)題。經(jīng)濟(jì)預(yù)測(cè)是在一定的經(jīng)濟(jì)理論指導(dǎo)下,以經(jīng)濟(jì)發(fā)展的歷史和現(xiàn)狀為出發(fā)點(diǎn),以調(diào)研資料和統(tǒng)計(jì)數(shù)據(jù)為依據(jù),在對(duì)經(jīng)濟(jì)發(fā)展過(guò)程進(jìn)行定性分析和定量分析的基礎(chǔ)上,對(duì)經(jīng)濟(jì)發(fā)展的未來(lái)情況所作出的推測(cè)。由于經(jīng)濟(jì)現(xiàn)象紛繁復(fù)雜,能獲取的統(tǒng)計(jì)資料有限,現(xiàn)有的經(jīng)濟(jì)預(yù)測(cè)理論與方法還不能對(duì)此給予完全合理的解釋和有效的預(yù)測(cè),經(jīng)濟(jì)預(yù)測(cè)的實(shí)效往往不佳,為此本文引入神經(jīng)網(wǎng)絡(luò)方法對(duì)中國(guó)制造業(yè)生產(chǎn)率進(jìn)行短期預(yù)測(cè),獲取促進(jìn)制造業(yè)生產(chǎn)率發(fā)展的具體途徑,同時(shí),也為經(jīng)濟(jì)領(lǐng)域同類短期預(yù)測(cè)準(zhǔn)確性的解決提供一種可行的思路和方法。

        一、BP神經(jīng)網(wǎng)絡(luò)的基本原理

        BP(Back Propagation)網(wǎng)絡(luò)能學(xué)習(xí)和存貯大量的輸入-輸出模式映射關(guān)系,而無(wú)需事前揭示描述這種映射關(guān)系的數(shù)學(xué)方程。它的學(xué)習(xí)規(guī)則是使用最速下降法,通過(guò)反向傳播來(lái)不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差平方和最小[1,2]。BP神經(jīng)網(wǎng)絡(luò)模型拓?fù)浣Y(jié)構(gòu)包括輸入層(input layer)、隱層(hidden layer)和輸出層(output layer)(如圖1所示)。

        二、BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練程序的編制

        借助于MATLAB神經(jīng)網(wǎng)絡(luò)工具箱[3]來(lái)實(shí)現(xiàn)多層前饋BP網(wǎng)絡(luò)的轉(zhuǎn)換,免去了許多編寫(xiě)計(jì)算機(jī)程序的煩惱。神經(jīng)網(wǎng)絡(luò)的實(shí)際輸出值與輸入值以及各權(quán)值和閾值有關(guān),為了使實(shí)際輸出值與網(wǎng)絡(luò)期望輸出值相吻合,可用含有一定數(shù)量學(xué)習(xí)樣本的樣本集和相應(yīng)期望輸出值的集合來(lái)訓(xùn)練網(wǎng)絡(luò)。

        1.訓(xùn)練參數(shù)的設(shè)定

        訓(xùn)練參數(shù)的設(shè)定:一般先對(duì)如下參數(shù)進(jìn)行賦值:

        最大訓(xùn)練步數(shù):net.trainParam.epochs=1000

        最小梯度差:net.trainParam.min-grad=-3

        精度目標(biāo)值:net.trainParam.goal=1e-4

        顯示間隔:net.trainParam.show=20

        動(dòng)量系數(shù):net.trainParam.mc=0.9

        學(xué)習(xí)率:net.trainParam.lr=0.5

        2.設(shè)計(jì)網(wǎng)絡(luò)函數(shù)

        設(shè)計(jì)網(wǎng)絡(luò)函數(shù)newff:用于創(chuàng)建前饋式BP網(wǎng)絡(luò),調(diào)用語(yǔ)法為:

        net=newff(PR,[S1 S2…SN1],{TF1 TF2…TFN1},BTF,BLF,PF)

        PR―R×2矩陣,由訓(xùn)練樣本R個(gè)輸入的最大最小值構(gòu)成

        Si―第i層節(jié)點(diǎn)數(shù),輸入層節(jié)點(diǎn)數(shù)為3個(gè),依次為制造業(yè)工業(yè)增加值、制造業(yè)全社會(huì)固定資產(chǎn)投資和工資;輸出層節(jié)點(diǎn)數(shù)為2個(gè),依次為當(dāng)年和下一年的全要素生產(chǎn)率;這里主要問(wèn)題是隱層的確定,從兩個(gè)方面入手:

        第9篇:神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀范文

        關(guān)鍵詞:高速公路;隧道施工系統(tǒng);安全評(píng)價(jià);模糊理論;神經(jīng)網(wǎng)絡(luò)

        0引言

        近年來(lái),隨著國(guó)家高速公路迅猛發(fā)展,隧道建設(shè)數(shù)量也越來(lái)越多,規(guī)模也越來(lái)越大。在隧道施工過(guò)程中,由于圍巖地質(zhì)條件的多樣性和復(fù)雜性,其施工事故發(fā)生率比其他巖土工程高且嚴(yán)重,給隧道工程施工人員身心帶來(lái)嚴(yán)重的危害,社會(huì)影響惡劣,有悖于國(guó)家建設(shè)和諧社會(huì)的宗旨。這就要求用科學(xué)的方法對(duì)隧道施工生產(chǎn)系統(tǒng)進(jìn)行安全分析與評(píng)估,預(yù)測(cè)事故發(fā)生的可能性[1]。

        在傳統(tǒng)的公路隧道施工生產(chǎn)系統(tǒng)安全評(píng)價(jià)中,經(jīng)常使用的安全評(píng)價(jià)方法主要以定性安全評(píng)價(jià)方法為主,如專家論證法、安全檢查表法及作業(yè)條件危險(xiǎn)性評(píng)價(jià)法等[2,3]。近年來(lái),在公路隧道施工生產(chǎn)系統(tǒng)安全評(píng)價(jià)中,引人了模糊綜合評(píng)價(jià)的方法,取得了較好的決策效果[4]。但是,該方法缺乏對(duì)環(huán)境變化的自學(xué)習(xí)能力,對(duì)權(quán)值不能進(jìn)行動(dòng)態(tài)調(diào)整[5],而神經(jīng)網(wǎng)絡(luò)具有非線性逼近能力,具有自學(xué)習(xí)、自適應(yīng)和并行分布處理能力,但其對(duì)不確定性知識(shí)的表達(dá)能力較差,因此,模糊控制與神經(jīng)網(wǎng)絡(luò)結(jié)合就可以優(yōu)勢(shì)互補(bǔ),各取所長(zhǎng)[6],在這方面已經(jīng)出現(xiàn)了一些研究成果[7~11]。為此,本文把人工神經(jīng)網(wǎng)絡(luò)理論與模糊綜合評(píng)價(jià)理論相融合,研究建立了一種模糊神經(jīng)網(wǎng)絡(luò)評(píng)價(jià)模型,對(duì)公路隧道施工的安全管理水平進(jìn)行評(píng)價(jià)。

        1模糊神經(jīng)網(wǎng)絡(luò)

        1.1基本結(jié)構(gòu)原理

        模糊神經(jīng)網(wǎng)絡(luò)是由與人腦神經(jīng)細(xì)胞相似的基本計(jì)算單元即神經(jīng)元通過(guò)大規(guī)模并行、相互連接而成的網(wǎng)絡(luò)系統(tǒng),訓(xùn)練完的網(wǎng)絡(luò)系統(tǒng)具有處理評(píng)估不確定性的能力,也具有記憶聯(lián)想的能力,可以成為解決評(píng)估問(wèn)題的有效工具,對(duì)未知對(duì)象作出較為客觀正確的評(píng)估。

        根據(jù)評(píng)估問(wèn)題的要求,本文采用具有多輸人單元和五輸出單元的三層前饋神經(jīng)網(wǎng)絡(luò),其中包括神經(jīng)網(wǎng)絡(luò)和模糊集合兩方面的內(nèi)容。

        1.2神經(jīng)網(wǎng)絡(luò)

        為了模擬人腦結(jié)構(gòu)和功能的基本特性,前饋神經(jīng)網(wǎng)絡(luò)由許多非線性神經(jīng)元組成,并行分布,多層連接。Robert Hecht一Nielson于1989年證明了對(duì)于任何在閉區(qū)間內(nèi)的一個(gè)連續(xù)函數(shù)都可以用一個(gè)隱層的BP網(wǎng)絡(luò)來(lái)逼近[12],因而一個(gè)三層的BP網(wǎng)絡(luò)完全可以完成任意的輸人層到輸出層的變換。因此,本文研究的公路隧道施工系統(tǒng)安全評(píng)價(jià)模糊神經(jīng)網(wǎng)絡(luò)采用三層BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。輸人層有 個(gè)神經(jīng)元,輸人向量 , ,輸人層神經(jīng)元 的輸出是輸人向量的各分分量 。隱層有個(gè)神經(jīng)元 , ,若輸人層神經(jīng)元 與隱層神經(jīng)元 之間的連接權(quán)值為 ,且隱層神經(jīng)元 的閾值為 ,則隱層神經(jīng)元 的輸出為

        (l)

        式中 是神經(jīng)元的激勵(lì)函數(shù),一般選取單調(diào)遞增的有界非線性函數(shù),這里選用Sigmoid函數(shù):

        (2)

        由此,隱層神經(jīng)元的輸出為:

        (3)

        同理可得輸出層神經(jīng)元的輸出為:

        (4)

        1.3學(xué)習(xí)算法

        本網(wǎng)絡(luò)采用BP學(xué)習(xí)算法,它是一種有教師的學(xué)習(xí)算法,其學(xué)習(xí)過(guò)程由信號(hào)的正向傳播和誤差的反向傳播組成?;驹硎牵涸O(shè)輸人學(xué)習(xí)樣本為 個(gè),即輸人矢量 ,已知其對(duì)應(yīng)的期望輸出矢量(教師信號(hào))為 ,正向傳播過(guò)程將學(xué)習(xí)樣本輸人模式 從輸人層經(jīng)隱含單元層逐層處理,并傳向輸出層,得到實(shí)際的輸出矢量 ,如果在輸出層不能得到期望輸出 ,則轉(zhuǎn)人反向傳播,將 與 的誤差信號(hào)通過(guò)隱層向輸入層逐層反傳,并將誤差分?jǐn)偨o各層的所有單元,從而調(diào)整各神經(jīng)元之間的連接權(quán)值,這種信號(hào)正向傳播與誤差反向傳播得各層權(quán)值調(diào)整過(guò)程是周而復(fù)始地進(jìn)行的,直到網(wǎng)絡(luò)輸出的誤差減少到可接受的程度,或進(jìn)行到預(yù)先設(shè)定的學(xué)習(xí)次數(shù)為止。

        網(wǎng)絡(luò)的具體學(xué)習(xí)算法的計(jì)算模型如下:

        對(duì)某一學(xué)習(xí)樣本 ,誤差函數(shù)為

        (5)

        式中: 、 分別為該樣本的輸出期望值和實(shí)際值。

        對(duì)于所有學(xué)習(xí)樣本 ,網(wǎng)絡(luò)的總誤差為

        (6)

        網(wǎng)絡(luò)學(xué)習(xí)算法實(shí)際上就是求誤差函數(shù)的極小值。利用非線性規(guī)劃中的梯度下降法(最速下降法),使權(quán)值沿著誤差函數(shù)的負(fù)梯度方向改變。

        隱層與輸出層之間的權(quán)值(及閾值) 的更新量 可表示為

        (7)

        式中: 為學(xué)習(xí)率,可取 。

        將式(6)和(4)代入式(7),并利用復(fù)合函數(shù)求導(dǎo)的連鎖規(guī)則,得

        (8)

        式中: 為迭代次數(shù), 為誤差信號(hào)

        (9)

        類似的,輸入層與隱層之間的權(quán)值(及閾值)修正為

        (10)

        同理可得

        式中 為誤差信號(hào)

        (11)

        為了改善收斂性,提高網(wǎng)絡(luò)的訓(xùn)練速度,避免訓(xùn)練過(guò)程發(fā)生振蕩,對(duì)BP算法進(jìn)行改進(jìn),在權(quán)值調(diào)整公式中增加一動(dòng)量項(xiàng),即從前一次權(quán)值調(diào)整量中取出一部分迭加到本次權(quán)值調(diào)整量中,即:

        (12)

        (13)

        式中 為動(dòng)量因子,一般有 。

        1.4模糊集合

        評(píng)估指標(biāo)集由表征一類評(píng)估決策問(wèn)題的若干性能指標(biāo)組成。由于指標(biāo)的量化含有不確定性,故用模糊方法加以處理[13]。評(píng)估指標(biāo)的模糊集合 可表示為

        (14)

        式中: 是評(píng)估指標(biāo), 是相應(yīng)指標(biāo)的評(píng)價(jià)滿意度, 。

        評(píng)估指標(biāo)集用其滿意度表示,取值在[0,1]之間,作為模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng)中神經(jīng)網(wǎng)絡(luò)的輸人向量,這正好符合神經(jīng)網(wǎng)絡(luò)對(duì)輸人向量特征化的要求。實(shí)踐表明,經(jīng)過(guò)對(duì)輸人向量的特征化處理,可大大減少網(wǎng)絡(luò)的學(xué)習(xí)時(shí)間,加速網(wǎng)絡(luò)訓(xùn)練的收斂。

        2隧道施工系統(tǒng)安全評(píng)價(jià)模糊神經(jīng)網(wǎng)絡(luò)

        2.1指標(biāo)體系與神經(jīng)網(wǎng)絡(luò)劃分

        實(shí)踐證明,一個(gè)好的隧道施工系統(tǒng)安全評(píng)價(jià)方法應(yīng)滿足以下要求:評(píng)價(jià)指標(biāo)能全面準(zhǔn)確地反映出隧道施工系統(tǒng)的狀況與技術(shù)質(zhì)量特征;評(píng)價(jià)模式簡(jiǎn)單明了,可操作性強(qiáng),易掌握;評(píng)價(jià)結(jié)論能反映隧道施工系統(tǒng)的合理性、經(jīng)濟(jì)性及安全可靠性;評(píng)價(jià)中所采用的數(shù)據(jù)易于獲取,數(shù)據(jù)處理工作量??;頂層輸出即為系統(tǒng)的專家評(píng)估,而每層各評(píng)估項(xiàng)目的子系統(tǒng)都可以用子結(jié)構(gòu)表示。

        每個(gè)子結(jié)構(gòu)具有輸人輸出關(guān)系可表達(dá)為

        (15)

        其中 是子系統(tǒng)的輸出, 是子系統(tǒng)的輸人矢量, 為相應(yīng)的專家(加權(quán))知識(shí)。

        評(píng)估專家系統(tǒng)中各子系統(tǒng)的評(píng)估由各自的模糊神經(jīng)網(wǎng)絡(luò)來(lái)完成。

        這種對(duì)評(píng)估系統(tǒng)的結(jié)構(gòu)分解和組合具有如下特點(diǎn):

        (1)每個(gè)子系統(tǒng)可以采用較少的神經(jīng)元來(lái)實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)和知識(shí)推理,這樣既減少了學(xué)習(xí)樣本數(shù)、提高了樣本訓(xùn)練速度,又能夠獨(dú)立完成某一推理任務(wù)。

        (2)分解的各子系統(tǒng)具有相對(duì)獨(dú)立性,便于系統(tǒng)的修改、擴(kuò)展和子系統(tǒng)的刪除,從而具有良好的維護(hù)性。

        (3)子系統(tǒng)的評(píng)估項(xiàng)目即為節(jié)點(diǎn),在系統(tǒng)進(jìn)行評(píng)估推理時(shí)產(chǎn)生的評(píng)估表示式可以很好地解釋評(píng)估系統(tǒng)的推理過(guò)程,避免了神經(jīng)網(wǎng)絡(luò)權(quán)值難以理解所致的推理過(guò)程難以理解的弱點(diǎn)。

        2.2網(wǎng)絡(luò)的設(shè)計(jì)

        評(píng)估問(wèn)題是前向處理問(wèn)題,所以選用如前所述的前向型模糊神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)。

        (1)輸人層

        輸人層是對(duì)模糊信息進(jìn)行預(yù)處理的網(wǎng)層,主要用于對(duì)來(lái)自輸人單元的輸人值進(jìn)行規(guī)范化處理,輸出由系統(tǒng)模糊變量基本狀態(tài)的隸屬函數(shù)所確定的標(biāo)準(zhǔn)化的值,以便使其適應(yīng)后面的處理。根據(jù)評(píng)價(jià)指標(biāo)體系,對(duì)應(yīng)20個(gè)指標(biāo)構(gòu)建BP網(wǎng)絡(luò)的輸入層為20個(gè)節(jié)點(diǎn),將指標(biāo)轉(zhuǎn)換為相應(yīng)指數(shù)后作為樣本進(jìn)入網(wǎng)絡(luò)進(jìn)行計(jì)算。

        (2)隱層(模糊推理層)

        該層是前向型模糊神經(jīng)網(wǎng)絡(luò)的核心,用以執(zhí)行模糊關(guān)系的映射,將指標(biāo)狀態(tài)輸入與評(píng)估結(jié)果輸出聯(lián)系起來(lái)。采用試探法選取模型的隱含層神經(jīng)元數(shù),即首先給定一個(gè)較小的隱含層神經(jīng)元數(shù),代入模型觀察其收斂情況,然后逐漸增大,直至網(wǎng)絡(luò)穩(wěn)定收斂。通過(guò)計(jì)算該模型的隱含層神經(jīng)元數(shù)為28個(gè)。

        (3)輸出層

        輸出層是求解模糊神經(jīng)網(wǎng)絡(luò)的結(jié)果,也是最后的評(píng)估結(jié)果。我們把評(píng)價(jià)因素論域中的每一因素分成5個(gè)評(píng)價(jià)等級(jí),即

        ={安全( ),較安全( ),安全性一般( ),較不安全( ),不安全( )}

        對(duì)應(yīng)這5個(gè)等級(jí),確定輸出層為5個(gè)節(jié)點(diǎn)。這樣就構(gòu)建了一個(gè)“20―28―5”的3層BP網(wǎng)絡(luò)作為評(píng)價(jià)體系的網(wǎng)絡(luò)模型。

        2.3模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練

        網(wǎng)絡(luò)設(shè)計(jì)好后,須對(duì)其進(jìn)行訓(xùn)練,使網(wǎng)絡(luò)具有再現(xiàn)專家評(píng)估的知識(shí)和經(jīng)驗(yàn)的能力。樣本數(shù)據(jù)來(lái)自我省已經(jīng)建成的高速公路隧道施工的現(xiàn)場(chǎng)數(shù)據(jù)庫(kù),從中選取30組,其中20組數(shù)據(jù)作為訓(xùn)練樣本,余下的10組作為測(cè)試樣本。實(shí)際網(wǎng)絡(luò)訓(xùn)練表明,當(dāng)訓(xùn)練步數(shù)為12875時(shí),達(dá)到了目標(biāo)要求的允差,獲得模糊神經(jīng)網(wǎng)絡(luò)各節(jié)點(diǎn)的權(quán)值和閾值,網(wǎng)絡(luò)訓(xùn)練學(xué)習(xí)成功。根據(jù)最大隸屬度原則進(jìn)行比較,與期望結(jié)果相符,其準(zhǔn)確率為100%。這說(shuō)明所建立的隧道施工系統(tǒng)安全評(píng)價(jià)模糊神經(jīng)網(wǎng)絡(luò)模型及訓(xùn)練結(jié)果可靠。

        3 工程應(yīng)用實(shí)例

        利用所訓(xùn)練好的模糊神經(jīng)網(wǎng)絡(luò)模型,對(duì)江西省正在施工的某高速公路A3合同段3座隧道(北晨亭隧道、洪家坂隧道和窯坑隧道)施工系統(tǒng)進(jìn)行安全評(píng)價(jià)測(cè)定,評(píng)價(jià)出系統(tǒng)的安全狀況與3座隧道施工實(shí)際情況完全相符。同時(shí),實(shí)際系統(tǒng)的評(píng)價(jià)結(jié)果又可作為新的學(xué)習(xí)樣本輸入網(wǎng)絡(luò)模型,實(shí)現(xiàn)歷史經(jīng)驗(yàn)和新知識(shí)相結(jié)合,在發(fā)展過(guò)程中動(dòng)態(tài)地評(píng)價(jià)系統(tǒng)的安全狀態(tài)。

        4 結(jié)論

        (1)本文對(duì)模糊理論與神經(jīng)網(wǎng)絡(luò)融合技術(shù)進(jìn)行了研究,建立了一種公路隧道施工系統(tǒng)安全模糊神經(jīng)網(wǎng)絡(luò)評(píng)價(jià)模型,利用歷史樣本數(shù)據(jù)進(jìn)行學(xué)習(xí)訓(xùn)練和測(cè)試,并對(duì)工程實(shí)例進(jìn)行了評(píng)價(jià)。結(jié)果顯示,該評(píng)價(jià)方法可行,評(píng)價(jià)精度滿足工程應(yīng)用要求,為公路隧道施工安全評(píng)價(jià)探索了一種新的評(píng)價(jià)方法。

        (2)運(yùn)用模糊神經(jīng)網(wǎng)絡(luò)知識(shí)存儲(chǔ)和自適應(yīng)性特征,通過(guò)適當(dāng)補(bǔ)充學(xué)習(xí)樣本,可以實(shí)現(xiàn)歷史經(jīng)驗(yàn)與新知識(shí)完美結(jié)合,在發(fā)展過(guò)程中動(dòng)態(tài)地評(píng)價(jià)公路隧道施工系統(tǒng)的安全狀態(tài),可及時(shí)評(píng)估出施工系統(tǒng)的安全狀況,盡早發(fā)現(xiàn)安全隱患。

        參考文獻(xiàn):

        [1]徐德蜀.安全科學(xué)與工程導(dǎo)論[M].北京:化學(xué)工業(yè)出版社,2005.

        [2]劉鐵民,張興凱,劉功智.安全評(píng)價(jià)方法應(yīng)用指南[M].北京:化學(xué)工業(yè)出版社,2005.

        [3]田建,李志強(qiáng),張斌.交通建設(shè)工程安全評(píng)價(jià)技術(shù)現(xiàn)狀及趨勢(shì)研究[J].中國(guó)安全科學(xué)學(xué)報(bào),2008,18(6):171-176.

        [4]張鴻,劉優(yōu)平,黎劍華等.基于模糊理論的隧道施工安全預(yù)警模型研究及應(yīng)用[J].中國(guó)安全科學(xué)學(xué)報(bào),2009.19(4):5-10.

        [5]劉輝,王海寧,呂志飛.模糊神經(jīng)網(wǎng)絡(luò)技術(shù)在礦山安全評(píng)價(jià)中的適應(yīng)性研究[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2005,1(3):54-59.

        [6]張吉禮.模糊-神經(jīng)網(wǎng)絡(luò)控制原理與工程應(yīng)用[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2004.

        [7]葛淑杰,李彥峰,姜天文等.基于模糊神經(jīng)網(wǎng)絡(luò)的煤礦安全評(píng)價(jià)綜合評(píng)判[J].黑龍江科技學(xué)院學(xué)報(bào),2007,17(4):321-325.

        [8]鄭恒,汪佩蘭.模糊神經(jīng)網(wǎng)絡(luò)在火工品生產(chǎn)系統(tǒng)安全評(píng)價(jià)中的應(yīng)用[J].安全與環(huán)境學(xué)報(bào),2004,4:159-162.

        [9田軍.基于模糊神經(jīng)網(wǎng)絡(luò)的隧道圍巖分級(jí)系統(tǒng)[J].湖南交通科技,2007,34(4):104-107.

        [10]郭宇航,王保國(guó).兩類新型神經(jīng)網(wǎng)絡(luò)及其在安全評(píng)價(jià)中的應(yīng)用[J].中國(guó)安全科學(xué)學(xué)報(bào),2008,18(7):28-33.

        [11]宋瑞,鄧寶.神經(jīng)元網(wǎng)絡(luò)在安全評(píng)價(jià)中的應(yīng)用[J].中國(guó)安全科學(xué)學(xué)報(bào),2005,15(3):78-81.

        [12]韓力群.人工神經(jīng)網(wǎng)絡(luò)理論、設(shè)計(jì)及應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2007.

        [13]楊綸標(biāo),高英儀.模糊數(shù)學(xué)原理及應(yīng)用[M].廣州:華南理工大學(xué),2005.

        相關(guān)熱門(mén)標(biāo)簽
        无码人妻一二三区久久免费_亚洲一区二区国产?变态?另类_国产精品一区免视频播放_日韩乱码人妻无码中文视频
      2. <input id="zdukh"></input>
      3. <b id="zdukh"><bdo id="zdukh"></bdo></b>
          <b id="zdukh"><bdo id="zdukh"></bdo></b>
        1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

          <wbr id="zdukh"><table id="zdukh"></table></wbr>

          1. <input id="zdukh"></input>
            <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
            <sub id="zdukh"></sub>
            府谷县| 外汇| 拜泉县| 滕州市| 加查县| 开封市| 平湖市| 喀什市| 石门县| 白山市| 巴林左旗| 黄浦区| 兴义市| 仙居县| 上栗县| 泗阳县| 监利县| 康定县| 武山县| 宾川县| 临泽县| SHOW| 铜川市| 许昌市| 临澧县| 志丹县| 杭锦后旗| 房产| 湘潭市| 银川市| 年辖:市辖区| 华容县| 白玉县| 西贡区| 若尔盖县| 雷州市| 承德县| 勐海县| 庄河市| 南阳市| 大悟县| http://444 http://444 http://444