前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì)主題范文,僅供參考,歡迎閱讀并收藏。
【關(guān)鍵詞】深度神經(jīng)網(wǎng)絡(luò) 序列到序列網(wǎng)絡(luò) 卷積網(wǎng)絡(luò) 對(duì)抗式生成網(wǎng)路
1 深度神經(jīng)網(wǎng)絡(luò)起源
人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetworks,ANN)研究是人工智能領(lǐng)域的一個(gè)重要分支,在對(duì)生物神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)及其機(jī)制研究的基礎(chǔ)上,構(gòu)建類似的人工神經(jīng)網(wǎng)絡(luò),使得機(jī)器能直接從大量訓(xùn)練數(shù)據(jù)中學(xué)習(xí)規(guī)律。其研究最早可以追溯到1957年Frank Rosenblatt提出的感知機(jī)模型,他在《The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain》建立了第一個(gè)人工神經(jīng)網(wǎng)絡(luò)數(shù)學(xué)模型,19世紀(jì)80年代末期反向傳播(Back Propagation)算法的發(fā)明更是帶來了ANN的學(xué)習(xí)熱潮,但由于理論分析難度較大,訓(xùn)練方法及技巧尚不成熟,計(jì)算機(jī)運(yùn)算能力還不夠強(qiáng)大,這個(gè)時(shí)期ANN結(jié)構(gòu)較為簡(jiǎn)單,大部分都可等價(jià)為單隱層神經(jīng)網(wǎng)絡(luò),主要是進(jìn)行淺層學(xué)習(xí)(Shallow Learning)研究。
2006年Geoffrey Hinton在《A Fast Learning Algorithm for Deep Belief Nets》中提出了逐層貪婪預(yù)訓(xùn)練(layerwise greedy pretraining),顯著提高了MNIST手寫數(shù)字識(shí)別的準(zhǔn)確率,開創(chuàng)了深度學(xué)習(xí)的新方向;隨后又在《Reducing the Dimensionality of Data with Neural Networks》中提出了deep autoencoder結(jié)構(gòu),在圖像和文本降維實(shí)驗(yàn)上明顯優(yōu)于傳統(tǒng)算法,證明了深度學(xué)習(xí)的正確性。以這兩篇論文為開端,整個(gè)學(xué)術(shù)界掀起了對(duì)深度學(xué)習(xí)的研究熱潮,由于更多的網(wǎng)絡(luò)層數(shù)和參數(shù)個(gè)數(shù),能夠提取更多的數(shù)據(jù)特征,獲取更好的學(xué)習(xí)效果,ANN模型的層數(shù)和規(guī)模相比之前都有了很大的提升,被稱之為深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,DNN)。
2 深度神經(jīng)網(wǎng)絡(luò)的現(xiàn)代應(yīng)用
2010年以來,隨著理論不斷創(chuàng)新和運(yùn)算能力的增長(zhǎng),DNN被應(yīng)用到許多領(lǐng)域并取得了巨大的成功。2011年微軟和谷歌的研究員利用DNN將語音識(shí)別的錯(cuò)誤率降低了20%~30%;2012年在ImageNet圖像識(shí)別挑戰(zhàn)賽(ILSVRC2012)中DNN更是將識(shí)別錯(cuò)誤率從26%降到了15%;2016年3月DeepMind團(tuán)隊(duì)研發(fā)的圍棋軟件AlphaGO以4:1的巨大優(yōu)勢(shì)戰(zhàn)勝了世界圍棋冠軍李世石,2017年1月初AlphaGO的升級(jí)版Master以60:0的戰(zhàn)績(jī)擊敗了數(shù)十位中日韓圍棋高手。當(dāng)前對(duì)DNN的研究主要集中在以下領(lǐng)域:
2.1 語音識(shí)別領(lǐng)域
微軟研究院語音識(shí)別專家鄧立和俞棟從2009年開始和深度學(xué)習(xí)專家Geoffery Hinton合作,并于2011年宣布推出基于DNN的識(shí)別系統(tǒng),徹底改變了語音識(shí)別的原有技術(shù)框架;2012年11月,百度上線了第一款基于DNN的語音搜索系統(tǒng),成為最早采用DNN技術(shù)進(jìn)行商業(yè)語音服務(wù)的公司之一;2016年微軟使用循環(huán)神經(jīng)網(wǎng)絡(luò)語言模型(Recurrent Neural Network based Language Modeling,RNN-LM)將switchboard的詞識(shí)別錯(cuò)誤率降低到了6.3%。
2.2 圖像識(shí)別領(lǐng)域
早在1989年,YannLeCun和他的同事們就提出了卷積神經(jīng)網(wǎng)絡(luò)(Convolution Neural Networks,CNN)結(jié)構(gòu)。在之后的很長(zhǎng)一段時(shí)間里,CNN雖然在諸如手寫數(shù)字問題上取得過世界最好的成功率,但一直沒有被廣泛應(yīng)用。直到2012年10月,Geoffrey Hinton在ILSVRC2012中使用更深的CNN將錯(cuò)誤率從26%降到15%,業(yè)界才重新認(rèn)識(shí)到CNN在圖像識(shí)別領(lǐng)域上的巨大潛力;2012年谷歌宣布基于CNN使得電腦直接從一千萬張圖片中自發(fā)學(xué)會(huì)貓臉識(shí)別;2013年DNN被成功應(yīng)用于一般圖片的識(shí)別和理解;2016年DeepMind團(tuán)隊(duì)基于CNN研發(fā)了圍棋AI,并取得了巨大成功。
2.3 自然語言處理領(lǐng)域
2003年YoshuaBengio等人提出單詞嵌入(word embedding)方法將單詞映射到一個(gè)矢量空間,然后用ANN來表示N-Gram模型;2014年10月NEC美國(guó)研究院將DNN用于自然語言處理(Natural language processing,NLP)的研究工作,其研究員Ronan Collobert和Jason Weston從2008年開始采用單詞嵌入技術(shù)和多層一維卷積的結(jié)構(gòu),用于POS Tagging、Chunking、Named Entity Recognition、Semantic Role Labeling等四典型NLP問題;2014年IlyaSutskever提出了基于LSTM的序列到序列(sequence to sequence,seq2seq)網(wǎng)絡(luò)模型,突破了傳統(tǒng)網(wǎng)絡(luò)的定長(zhǎng)輸入向量問題,開創(chuàng)了語言翻譯領(lǐng)域的新方向;2016年谷歌宣布推出基于DNN的翻譯系統(tǒng)GNMT(Google Neural Machine Translation),大幅提高了翻譯的精確度與流暢度。
3 深度神經(jīng)網(wǎng)絡(luò)常見結(jié)構(gòu)
DNN能夠在各領(lǐng)域取得巨大成功,與其模型結(jié)構(gòu)是密不可分的,現(xiàn)代DNN大都可歸納為三種基本結(jié)構(gòu):序列到序列網(wǎng)絡(luò)、卷積網(wǎng)絡(luò)、對(duì)抗式生成網(wǎng)絡(luò),或由這三種基本網(wǎng)絡(luò)結(jié)構(gòu)相互組合而成。
3.1 序列到序列網(wǎng)絡(luò)
序列到序列網(wǎng)絡(luò)的最顯著特征在于,它的輸入張量和輸出張量長(zhǎng)度都是動(dòng)態(tài)的,可視為一串不定長(zhǎng)序列,相比傳統(tǒng)結(jié)構(gòu)極大地?cái)U(kuò)展了模型的適應(yīng)范圍,能夠?qū)π蛄修D(zhuǎn)換問題直接建模,并以端到端的方式訓(xùn)練模型。典型應(yīng)用領(lǐng)域有:自動(dòng)翻譯機(jī)(將一種語言的單詞序列轉(zhuǎn)換為另一種語言的單詞序列),語音識(shí)別(將聲波采樣序列轉(zhuǎn)換為文本單詞序列),自動(dòng)編程機(jī)研究(將自然語言序列轉(zhuǎn)換為語法樹結(jié)構(gòu)),此類問題的特點(diǎn)在于:
(1)輸入和輸出數(shù)據(jù)都是序列(如連續(xù)值語音信號(hào)/特征、離散值的字符);
(2)輸入和輸出序列長(zhǎng)度都不固定;
(3)輸入輸出序列長(zhǎng)度沒有對(duì)應(yīng)關(guān)系。
其典型如圖1所示。
網(wǎng)絡(luò)由編碼器(encoder)網(wǎng)絡(luò)和解碼器網(wǎng)絡(luò)(decoder)兩部分連接構(gòu)成:
3.1.1 編碼器網(wǎng)絡(luò)
編碼器網(wǎng)絡(luò)通常是一個(gè)遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks,RNN),網(wǎng)絡(luò)節(jié)點(diǎn)一般使用長(zhǎng)短期記憶模型(Long Short Term Memory,LSTM)實(shí)現(xiàn),序列中里第t個(gè)張量xt的輸出yt依賴于之前的輸出序列(y0、y1…yt-1),輸入序列(x0、x1、x2…)那爸梁笠來問淙臚絡(luò),整個(gè)序列處理完后得到最終的輸出Y以及各層的隱藏狀態(tài)H。
3.1.2 解碼器網(wǎng)絡(luò)
解碼器網(wǎng)絡(luò)是一個(gè)與編碼器網(wǎng)絡(luò)結(jié)構(gòu)相同的RNN網(wǎng)絡(luò),以解碼器的最終輸出(Y,H)為初始輸入,使用固定的開始標(biāo)記S及目標(biāo)序列G當(dāng)作輸入數(shù)據(jù)進(jìn)行學(xué)習(xí),目標(biāo)是使得在X輸入下Y和G盡量接近,即損失度函數(shù)f(X)取得最小值。
解碼器網(wǎng)絡(luò)屬于典型的監(jiān)督學(xué)習(xí)結(jié)構(gòu),可以用BP算法進(jìn)行訓(xùn)練,而編碼器網(wǎng)絡(luò)的輸出傳遞給了解碼器網(wǎng)絡(luò),因此也能同時(shí)進(jìn)行訓(xùn)練。網(wǎng)絡(luò)模型學(xué)習(xí)完畢后,將序列X輸入編碼器,并將起始標(biāo)記S輸入解碼器,網(wǎng)絡(luò)就會(huì)給出正確的對(duì)應(yīng)序列。
3.2 卷積神經(jīng)網(wǎng)絡(luò)
卷積神經(jīng)網(wǎng)絡(luò)將傳統(tǒng)圖像處理的卷積運(yùn)算和DNN相結(jié)合,屬于前饋神經(jīng)網(wǎng)絡(luò),是在生物視覺皮層的研究基礎(chǔ)上發(fā)展而來的,在大型圖像處理上有出色表現(xiàn)。CNN一般由多個(gè)結(jié)構(gòu)相似的單元組成,每個(gè)單元包含卷積層(convolution layer)和池化層(poolinglayer),通常網(wǎng)絡(luò)末端還連接全聯(lián)通層(fully-connected layer,F(xiàn)C)及Softmax分類器。這種結(jié)構(gòu)使得CNN非常適合處理二維結(jié)構(gòu)數(shù)據(jù),相比其它DNN在圖像處理領(lǐng)域上具有天然優(yōu)勢(shì),CNN的另一優(yōu)勢(shì)還在于,由于卷積層共享參數(shù)的特點(diǎn),使得它所需的參數(shù)數(shù)量大為減少,提高了訓(xùn)練速度。其典型結(jié)構(gòu)如圖2所示:
3.2.1 卷積層(Convolutional layer)
卷積層由若干卷積核構(gòu)成,每個(gè)卷積核在整個(gè)圖像的所有通道上同時(shí)做卷積運(yùn)算,卷積核的參數(shù)通過BP算法從訓(xùn)練數(shù)據(jù)中自動(dòng)獲取。卷積核是對(duì)生物視覺神經(jīng)元的建模,在圖像局部區(qū)域進(jìn)行的卷積運(yùn)算實(shí)質(zhì)上是提取了輸入數(shù)據(jù)的特征,越深層的卷積層所能提取到的特征也越復(fù)雜。例如前幾個(gè)卷積層可能提取到一些邊緣、梯度、線條、角度等低級(jí)特征,后續(xù)的卷積層則能認(rèn)識(shí)圓、三角形、長(zhǎng)方形等稍微復(fù)雜的幾何概念,末尾的卷積層則能識(shí)別到輪子、旗幟、足球等現(xiàn)實(shí)物體。
3.2.2 池化層(Poolinglayer)
池化層是卷積網(wǎng)絡(luò)的另一重要部分,用于縮減卷積層提取的特征圖的尺寸,它實(shí)質(zhì)上是某種形式的下采樣:將圖像劃分為若干矩形區(qū)塊,在每個(gè)區(qū)塊上運(yùn)算池化函數(shù)得到輸出。有許多不同形式的池化函數(shù),常用的有“最大池化”(maxpooling,取區(qū)塊中數(shù)據(jù)的最大值)和“平均池化”(averagepooling,取區(qū)塊中數(shù)據(jù)的平均值)。池化層帶來的好處在于:
(1)減小了數(shù)據(jù)尺寸,降低參數(shù)的數(shù)量和計(jì)算量;
(2)模糊了各“像素”相對(duì)位置關(guān)系,泛化了網(wǎng)絡(luò)識(shí)別模式。
但由于池化層過快減少了數(shù)據(jù)的大小,導(dǎo)致,目前文獻(xiàn)中的趨勢(shì)是在池化運(yùn)算時(shí)使用較小的區(qū)塊,甚至不再使用池化層。
3.3 生成式對(duì)抗網(wǎng)絡(luò)(Generative Adversarial Network,GAN)
生成式對(duì)抗網(wǎng)絡(luò)最初由Goodfellow等人在NIPS2014年提出,是當(dāng)前深度學(xué)習(xí)研究的重要課題之一。它的目的是收集大量真實(shí)世界中的數(shù)據(jù)(例如圖像、聲音、文本等),從中學(xué)習(xí)數(shù)據(jù)的分布模式,然后產(chǎn)生盡可能逼真的內(nèi)容。GAN在圖像去噪,修復(fù),超分辨率,結(jié)構(gòu)化預(yù)測(cè),強(qiáng)化學(xué)習(xí)中等任務(wù)中非常有效;另一重要應(yīng)用則是能夠在訓(xùn)練集數(shù)據(jù)過少的情況下,生成模擬數(shù)據(jù)來協(xié)助神經(jīng)網(wǎng)絡(luò)完成訓(xùn)練。
3.3.1 模型結(jié)構(gòu)
GAN網(wǎng)絡(luò)典型結(jié)構(gòu)如圖3所示,一般由兩部分組成,即生成器網(wǎng)絡(luò)(Generator)和識(shí)別器網(wǎng)絡(luò)(Discriminator):
(1)生成器網(wǎng)絡(luò)的目標(biāo)是模擬真實(shí)數(shù)據(jù)的分布模式,使用隨機(jī)噪聲生成盡量逼真的數(shù)據(jù)。
(2)識(shí)別器的目標(biāo)是學(xué)習(xí)真實(shí)數(shù)據(jù)的有效特征,從而判別生成數(shù)據(jù)和真實(shí)數(shù)據(jù)的差異度。
3.3.2 訓(xùn)練方法
GAN采用無監(jiān)督學(xué)習(xí)進(jìn)行訓(xùn)練,輸入向量z一般由先驗(yàn)概率概率pz(z)生成,通過生成器網(wǎng)絡(luò)產(chǎn)生數(shù)據(jù)G(z)。來自訓(xùn)練集的真實(shí)數(shù)據(jù)的分布為pdata (x),GAN網(wǎng)絡(luò)的實(shí)質(zhì)是學(xué)習(xí)該特征分布,因此生成的數(shù)據(jù)G(z)必然也存在對(duì)應(yīng)的分布pg (z),而識(shí)別器網(wǎng)絡(luò)則給出數(shù)據(jù)來自于真實(shí)數(shù)據(jù)的概率D(x)以及D(G(z) )。整個(gè)訓(xùn)練過程的實(shí)質(zhì)就是生成器網(wǎng)絡(luò)和識(shí)別器網(wǎng)絡(luò)的博弈過程,即找到
4 深度神經(jīng)網(wǎng)絡(luò)研究展望
DNN雖然在各大領(lǐng)域都取得了重大的成功,甚至宣告了“智能時(shí)代”的來臨,但是與人類大腦相比,DNN在許多方面仍有顯著差距:
4.1 識(shí)別對(duì)抗樣本的挑戰(zhàn)
對(duì)抗樣本是指在數(shù)據(jù)集中添加微小的擾動(dòng)所形成的數(shù)據(jù),這些數(shù)據(jù)能使網(wǎng)絡(luò)以極高的置信度做出錯(cuò)誤的判別。在網(wǎng)絡(luò)實(shí)際使用過程中會(huì)帶來非常大的問題,比如病毒制造者可能刻意構(gòu)造樣本來繞過基于DNN的安全檢查網(wǎng)絡(luò)。部分研究指出問題的根因可能在于DNN本身的高度非線性,微小的擾動(dòng)可能在輸出時(shí)產(chǎn)生巨大的差異。
4.2 構(gòu)造統(tǒng)一模型的挑戰(zhàn)
DNN雖然在很多領(lǐng)域都取得了巨大的成功,但無論是序列到序列網(wǎng)絡(luò)、卷積網(wǎng)絡(luò)、還是對(duì)抗式生成網(wǎng)絡(luò)都只適應(yīng)于特定領(lǐng)域,與此相對(duì)的則是,人類只用一個(gè)大腦就能完成語音、文本、圖像等各類任務(wù),如何構(gòu)建類似的統(tǒng)一模型,對(duì)整個(gè)領(lǐng)域都是極大的挑戰(zhàn)。
4.3 提高訓(xùn)練效率的挑戰(zhàn)
DNN的成功依賴于大量訓(xùn)練數(shù)據(jù),據(jù)統(tǒng)計(jì)要使得網(wǎng)絡(luò)學(xué)會(huì)某一特征,平均需要50000例以上的樣本,相比而言人類只需要少量的指導(dǎo)即可學(xué)會(huì)復(fù)雜問題,這說明我們的模型和訓(xùn)練方法都還有極大的提高空間。
參考文獻(xiàn)
[1]ROSENBLATT F.The perceptron:a probabilistic model for information storage and organization in the brain [M].MIT Press,1988.
[2]HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets [J].Neural Computation,1989, 18(07):1527-54.
[3]HINTON G E,SALAKHUTDINOV R R. Reducing the Dimensionality of Data with Neural Networks[J].Science, 2006,313(5786):504.
[4]SEIDE F,LI G,YU D.Conversational Speech Transcription Using Context-Dependent Deep Neural Networks; proceedings of the INTERSPEECH 2011, Conference of the International Speech Communication Association, Florence,Italy,August,F(xiàn),2011 [C].
[5]OQUAB M,BOTTOU L,LAPTEV I,et al. Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks; proceedings of the Computer Vision and Pattern Recognition,F(xiàn),2014 [C].
[6]SILVER D,HUANG A,MADDISON C J,et al.Mastering the game of Go with deep neural networks and tree search [J].Nature,2016,529(7587):484.
[7]XIONG W,DROPPO J,HUANG X,et al.The Microsoft 2016 Conversational Speech Recognition System[J].2016.
[8]LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition [J].Proceedings of the IEEE,1998,86(11):2278-324.
[9]BENGIO Y,DELALLEAU O, LE R N,et al.Learning eigenfunctions links spectral embedding and kernel PCA [J].Neural Computation,2004,16(10):2197-219.
[10]LEGRAND J,COLLOBERT R.Recurrent Greedy Parsing with Neural Networks [J].Lecture Notes in Computer Science,2014,8725(130-44.
[11]SUTSKEVER I,VINYALS O,LE Q V. Sequence to Sequence Learning with Neural Networks [J].Advances in Neural Information Processing Systems,2014,4(3104-12.
[12]WU Y,SCHUSTER M,CHEN Z,et al. Google's Neural Machine Translation System:Bridging the Gap between Human and Machine Translation [J]. 2016.
[13]GOODFELLOW I J,POUGETABADIE J,MIRZA M,et al.Generative Adversarial Networks [J].Advances in Neural Information Processing Systems,2014,3(2672-80.
作者撾
關(guān)鍵詞:人臉識(shí)別技術(shù);病毒管控;人工智能;神經(jīng)網(wǎng)絡(luò)
互聯(lián)網(wǎng)在今天的社會(huì)中發(fā)揮著舉足輕重的作用。如今社會(huì),隨著許多人工智能技術(shù)、網(wǎng)絡(luò)技術(shù)、云計(jì)算等互聯(lián)網(wǎng)技術(shù)不斷發(fā)展,像人臉識(shí)別等技術(shù)的應(yīng)用越來越廣泛,在控制病毒傳播途徑等場(chǎng)合發(fā)揮了巨大作用,不斷地提高著社會(huì)的安全性和便利性,不僅提高了防控中病毒檢測(cè)效率,也為病毒的控制提供了可靠的技術(shù)方法,能夠及時(shí)發(fā)現(xiàn)和控制公共場(chǎng)所的安全隱患因素,避免對(duì)社會(huì)經(jīng)濟(jì)、居民生活造成破壞,。但目前的人臉識(shí)別等技術(shù)還存在許多缺陷,需要完善和革新,充滿著巨大的潛力和進(jìn)步空間。
1人臉識(shí)別技術(shù)研究意義
人臉識(shí)別技術(shù)是一種生物特征識(shí)別技術(shù),最早產(chǎn)生于上世紀(jì)60年代,基于生理學(xué)、圖像處理、人機(jī)交互及認(rèn)知學(xué)等方面的一種識(shí)別技術(shù)。相比于其他人類特征像指紋識(shí)別、聲紋識(shí)別、虹膜識(shí)別等技術(shù),人臉識(shí)別雖然存在人臉識(shí)別單一性低,且區(qū)分度難度高、易受環(huán)境影響等不足。但是人臉識(shí)別技術(shù)擁有速度快、大范圍群體識(shí)別及非接觸、遠(yuǎn)距離可識(shí)別等優(yōu)勢(shì),都是其他生物識(shí)別識(shí)別技術(shù)所不具備的,而在傳播性強(qiáng)、感染風(fēng)險(xiǎn)大的病毒傳播過程中,這些顯然是必須要考慮的重要影響因素。通過將人臉識(shí)別等人工智能技術(shù)引入信息管理系統(tǒng),綜合集成視頻監(jiān)控、圖像處理、深度學(xué)習(xí)和大數(shù)據(jù)等技術(shù),結(jié)合非接觸測(cè)溫、定位等技術(shù),助力病情防控,在一定程度上推動(dòng)病毒病情防控信息化、智能化發(fā)展進(jìn)程。可作為加強(qiáng)公共場(chǎng)所的人員的體溫實(shí)時(shí)監(jiān)測(cè)、地址信息定位的監(jiān)控管理,規(guī)范公共場(chǎng)所針對(duì)病毒傳播的預(yù)防行為。
2人臉識(shí)別技術(shù)
2.1人臉檢測(cè)技術(shù)
人臉檢測(cè)是自動(dòng)人臉識(shí)別系統(tǒng)中的一個(gè)關(guān)鍵環(huán)節(jié)。早期的人臉識(shí)別研究主要針對(duì)具有較強(qiáng)約束條件的人臉圖象(如無背景的圖象),往往假設(shè)人臉位置靜止或者容易獲取。人臉檢測(cè)分為前深度學(xué)習(xí)時(shí)期,AdaBoost框架時(shí)期以及深度學(xué)習(xí)時(shí)期。前深度學(xué)習(xí)時(shí)期,人們將傳統(tǒng)的計(jì)算機(jī)視覺算法運(yùn)用于人臉檢測(cè),使用了模板匹配技術(shù),依賴于人工提取特征,然后用這些人工特征訓(xùn)練一個(gè)檢測(cè)器;后來技術(shù)發(fā)展,在2001年Viola和Jones設(shè)計(jì)了一種人臉檢測(cè)算法,它使用簡(jiǎn)單的Haar-like特征和級(jí)聯(lián)的AdaBoost分類器構(gòu)造檢測(cè)器,檢測(cè)速度較之前的方法有2個(gè)數(shù)量級(jí)的提高,并且保持了很好的精度,稱這種方法為VJ框架。VJ框架是人臉檢測(cè)歷史上第一個(gè)最具有里程碑意義的一個(gè)成果,奠定了基于AdaBoost目標(biāo)檢測(cè)框架的基礎(chǔ),使用級(jí)聯(lián)AdaBoost分類器進(jìn)行目標(biāo)檢測(cè)的思想是:用多個(gè)AdaBoost分類器合作實(shí)現(xiàn)對(duì)候選框的分類,這些分類器組成一個(gè)流水線,對(duì)滑動(dòng)窗口中的候選框圖像進(jìn)行判定,確定檢測(cè)目標(biāo)是人臉還是非人臉。Adaboost框架技術(shù)的精髓在于用簡(jiǎn)單的強(qiáng)分類器在初期快速排除掉大量的非人臉窗口,同時(shí)保證高的召回率,使得最終能通過所有級(jí)強(qiáng)分類器的樣本數(shù)數(shù)量較少。在深度學(xué)習(xí)時(shí)期,開始將卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用于人臉檢測(cè)領(lǐng)域。研究方向有兩種:一是將適用于多任務(wù)的目標(biāo)檢測(cè)網(wǎng)絡(luò)應(yīng)用于人臉檢測(cè)中;另一種是研究特定的的人臉檢測(cè)網(wǎng)絡(luò)。人臉檢測(cè)技術(shù)具有特殊唯一性和穩(wěn)定性,在現(xiàn)今社會(huì)對(duì)于構(gòu)建居民身份識(shí)別系統(tǒng),病毒傳播防控系統(tǒng),以及計(jì)算機(jī)視覺交互模型的構(gòu)建具有廣泛的應(yīng)用。人臉檢測(cè)技術(shù)不僅作為人臉識(shí)別的首要步驟,也在許多其他領(lǐng)域發(fā)揮巨大影響,如人臉關(guān)鍵點(diǎn)提取、人臉追蹤、基于內(nèi)容的檢索、數(shù)字視頻處理、視頻檢測(cè)、安防監(jiān)控、人證比對(duì)、社交等領(lǐng)域都有重要的應(yīng)用價(jià)值。數(shù)碼相機(jī)、手機(jī)等移動(dòng)端上的設(shè)備已經(jīng)大量使用人臉檢測(cè)技術(shù)實(shí)現(xiàn)成像時(shí)對(duì)人臉的對(duì)焦、圖集整理分類等功能,各種虛擬美顏相機(jī)也需要人臉檢測(cè)技術(shù)定位人臉。評(píng)價(jià)一個(gè)人臉檢測(cè)算法好壞的指標(biāo)是檢測(cè)率和誤報(bào)率,我們定義檢測(cè)率為:算法要求在檢測(cè)率和誤報(bào)率之間盡量平衡,理想的情況是達(dá)到高檢測(cè)率,低誤報(bào)率。
2.2人臉識(shí)別技術(shù)
目前主要流行的人臉識(shí)別技術(shù)包括幾何特征識(shí)別,模型識(shí)別,特征臉識(shí)別和基于深度學(xué)習(xí)/神經(jīng)網(wǎng)絡(luò)的的人臉識(shí)別技術(shù)等。人臉特征識(shí)別主要通過對(duì)人臉面部結(jié)構(gòu)特征如眼睛、鼻子等五官幾何特點(diǎn)及其相對(duì)位置分布等,生成圖像,并計(jì)算各個(gè)面部特征之間的歐式距離、分布、大小等關(guān)系該方法比較簡(jiǎn)單,反應(yīng)速度快,并且具有魯棒性強(qiáng)等優(yōu)點(diǎn),但是在實(shí)際環(huán)境下使用容易受檢測(cè)的環(huán)境的變化、人臉部表情變化等影響,精度通常不高,細(xì)節(jié)處理上不夠完善。模型識(shí)別技術(shù)主要包括隱馬爾可夫模型、主動(dòng)表象模型、主動(dòng)形狀模型等,識(shí)別率較高,并且對(duì)表情等變化影響較小。特征臉識(shí)別來源于主成分描述人臉照片技術(shù)(PCA技術(shù)),從數(shù)學(xué)上來講,特征臉就是人臉的圖像集協(xié)方差矩陣的特征向量。該技術(shù)能有效的顯示人臉信息,效率較高。基于深度學(xué)習(xí)的人臉識(shí)別是獲取人臉圖像特征,并將包含人臉信息的特征進(jìn)行線性組合等,提取人臉圖像的特征,學(xué)習(xí)人臉樣本數(shù)據(jù)的內(nèi)在規(guī)律和表示層次。可以采用如三層前饋BP神經(jīng)網(wǎng)絡(luò)。BP神經(jīng)網(wǎng)絡(luò)是1986年由Rumelhart和McClelland為首的科學(xué)家提出的概念,是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),是應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型之一。BP網(wǎng)絡(luò)本質(zhì)上是一種能夠?qū)W量的輸入與輸出之間的映射關(guān)系的輸入到輸出的映射,從結(jié)構(gòu)上講,BP網(wǎng)絡(luò)具有輸入層、隱藏層和輸出層;從本質(zhì)上講,BP算法就是以網(wǎng)絡(luò)誤差平方為目標(biāo)函數(shù)、采用梯度下降法來計(jì)算目標(biāo)函數(shù)的最小值。BP神經(jīng)網(wǎng)路輸入層有n個(gè)神經(jīng)元節(jié)點(diǎn),輸出層具有m個(gè)神經(jīng)元,隱含層具有k個(gè)神經(jīng)元,采用BP學(xué)習(xí)算法訓(xùn)練神經(jīng)網(wǎng)絡(luò)。BP算法主要包括兩個(gè)階段:向前傳播階段和向后傳播階段。在向前傳播階段,信息從輸入層經(jīng)過逐級(jí)的變換,傳送到輸出層。這個(gè)過程也是在網(wǎng)絡(luò)完成訓(xùn)練后正常運(yùn)行時(shí)執(zhí)行。將Xp作為輸入向量,Yp為期望輸出向量則BP神經(jīng)網(wǎng)絡(luò)向前傳播階段的運(yùn)算,得到實(shí)際輸出表達(dá)式為向后傳播階段主要包括兩大步驟:①計(jì)算實(shí)際輸出Op與對(duì)應(yīng)理想輸出Yp之差;②按極小化誤差方法調(diào)整帶權(quán)矩陣。之所以將此階段稱為向后傳播階段,是對(duì)應(yīng)于輸入信號(hào)的正常傳播而言的,因?yàn)樵撾A段都需要收到精度要求進(jìn)行誤差處理,所以也可以稱之為誤差傳播階段。(1)確定訓(xùn)練集。由訓(xùn)練策略選擇樣本圖像作為訓(xùn)練集。(2)規(guī)定各權(quán)值Vij,Wjk和閾值Φj,θk參數(shù),并初始化學(xué)習(xí)率α及精度控制參數(shù)ε。(3)從訓(xùn)練集中取輸入向量X到神經(jīng)網(wǎng)絡(luò),并確定其目標(biāo)輸出向量D。(4)利用上式計(jì)算出一個(gè)中間層輸出H,再用本式計(jì)算出網(wǎng)絡(luò)的實(shí)際輸出Y。(5)將輸出矢量中yk與目標(biāo)矢量中dk進(jìn)行比較,計(jì)算輸出誤差項(xiàng),對(duì)中間層的隱單元計(jì)算出L個(gè)誤差項(xiàng)。(6)最后計(jì)算出各權(quán)值和閾值的調(diào)整量。所以,卷積神經(jīng)網(wǎng)絡(luò)算法是通過訓(xùn)練人臉特征庫(kù)的方式進(jìn)行學(xué)習(xí)生成,對(duì)不同環(huán)境下不同表現(xiàn)情況的人臉圖像識(shí)別有更高的精確性。
2.3人臉識(shí)別軟件實(shí)現(xiàn)方式
(1)采集人臉數(shù)據(jù)集,然后對(duì)數(shù)據(jù)集進(jìn)行標(biāo)注,對(duì)數(shù)據(jù)進(jìn)行預(yù)處理變成訓(xùn)練格式。(2)部署訓(xùn)練模型,根據(jù)訓(xùn)練算法所需依賴部署電腦環(huán)境。(3)訓(xùn)練過程,下載預(yù)訓(xùn)練模型,將人臉數(shù)據(jù)集分批次作為輸入開始訓(xùn)練,最終輸出為訓(xùn)練好的模型。(4)部署訓(xùn)練好的模型,捕獲畫面即可對(duì)畫面中的人臉進(jìn)行實(shí)時(shí)檢測(cè)。
3人臉識(shí)別在病毒傳播防控中的應(yīng)用
通過人臉識(shí)別技術(shù),可以實(shí)現(xiàn)無接觸、高效率的對(duì)流動(dòng)人員進(jìn)行信息的收集、身份識(shí)別、定位地址信息等操作,大大減少了傳染的可能性,切斷了病毒傳播途徑,大大提高了工作效率。通過提前收錄人臉信息,采用深度學(xué)習(xí)對(duì)人臉特征模型的訓(xùn)練學(xué)習(xí),即可獲取人臉識(shí)別特征模型,再次驗(yàn)證時(shí)即可實(shí)現(xiàn)人臉識(shí)別和個(gè)人信息快速匹配。AI人工智能幫助人們更好的解放雙手,為人們的生活和工作提供了重要的幫助。本文還提出了在人臉識(shí)別的系統(tǒng)基礎(chǔ)上,可以加入定位系統(tǒng)、測(cè)溫系統(tǒng)等,依托物聯(lián)網(wǎng)技術(shù)和云計(jì)算大數(shù)據(jù),更加優(yōu)化管控系統(tǒng)的效率。病毒傳播防控中人臉識(shí)別系統(tǒng)流程可以概括為圖2。
4結(jié)語
本文研究了一種人臉識(shí)別技術(shù)在病毒傳播管控系統(tǒng)中的應(yīng)用,并分析設(shè)計(jì)了人臉識(shí)別實(shí)時(shí)監(jiān)測(cè)及病毒管控系統(tǒng)的流程,大大提高了信息管理的效率,減弱了傳播風(fēng)險(xiǎn)。作為一門新興技術(shù),目前的人臉識(shí)別技術(shù)還存在著諸多不足之處,像存在環(huán)境光的影響、人臉表情變化、妝容變化、佩戴口罩等都會(huì)影響到系統(tǒng)識(shí)別精度;另外安全問題也引人深思:現(xiàn)今人臉支付方式迅猛發(fā)展,錄入的人臉模型信息數(shù)據(jù)庫(kù)存在有一定的安全風(fēng)險(xiǎn),一旦被不法分子盜取信息后果不堪設(shè)想,所以模型數(shù)據(jù)庫(kù)安全、網(wǎng)絡(luò)安全,也是系統(tǒng)開發(fā)中必須重視的問題。人臉識(shí)別為代表的人工智能技術(shù)的研究,在病毒傳播管控作出重大貢獻(xiàn),依托我國(guó)領(lǐng)先的計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)和5G等技術(shù),加強(qiáng)人工智能技術(shù)與5G通信技術(shù)的結(jié)合,優(yōu)勢(shì)互補(bǔ),以此來加快大數(shù)據(jù)、人工智能和物聯(lián)網(wǎng)技術(shù)發(fā)展進(jìn)程,對(duì)我國(guó)社會(huì)進(jìn)步,促進(jìn)城市建設(shè)和管理朝著高效、秩序、和諧穩(wěn)定的方向不斷發(fā)展,增強(qiáng)我國(guó)的經(jīng)濟(jì)實(shí)力有著重大價(jià)值和研究意義。
參考文獻(xiàn)
[1]王彥秋,馮英偉.基于大數(shù)據(jù)的人臉識(shí)別方法[J].現(xiàn)代電子技術(shù),2021,44(7):87-90.
[2]李剛,高政.人臉自動(dòng)識(shí)別方法綜述[J].計(jì)算機(jī)應(yīng)用研究,2003,20(8):4-9,40.
[3]馬玉琨,徐姚文.ReviewofPresentationAttackDetectioninFaceRecognitionSystem[J].計(jì)算機(jī)科學(xué)與探索,2021,7(15):1195-1206.
[4]余璀璨,李慧斌.基于深度學(xué)習(xí)的人臉識(shí)別方法綜述[J].工程數(shù)學(xué)學(xué)報(bào),2021,38.
[5]王紅星,胡永陽,鄧超.基于LBP和ELM的人臉識(shí)別算法研究與實(shí)現(xiàn)[J].河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2005.
[6]鐘陳,王思翔,王文峰.面向疫情防控的人臉識(shí)別系統(tǒng)與標(biāo)準(zhǔn)研究[J].信息技術(shù)與標(biāo)準(zhǔn)化,2020,6,11-13,1671-539X.
[6]彭駿,吉綱,張艷紅,占濤.精準(zhǔn)人臉識(shí)別及測(cè)溫技術(shù)在疫情防控中的應(yīng)用[J].軟件導(dǎo)刊,2020,10,1672-7800.
[關(guān)鍵詞]主動(dòng)學(xué)習(xí);深度神經(jīng)網(wǎng)絡(luò);反饋;目標(biāo)識(shí)別
中圖分類號(hào):TP391.41 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-914X(2016)08-0383-01
Object Feedback Recognition System Base on Deep Learning
Hao Liu1,Junyu Dong1,Xin Sun1,Muwei Jian1
[Abstract]This paper proposed a novel deep neural network based object recognition method with a feedback process by using an appropriate active learning method. It selects better non-labeled samples to feedback and retrain the deep neural network model, which makes the accuracy and robustness of the object recognition system improved gradually during use. The experiments show that the proposed method can recognize the target object in a fast way and improve the accuracy of application in the real scene gradually.
[Key words]Active Learning; Deep Neural Network; Feedback; Object Recognition
1.介紹
目標(biāo)識(shí)別一直以來都是機(jī)器學(xué)習(xí)領(lǐng)域研究的前沿問題,近些年來,出現(xiàn)了一些優(yōu)秀的基于特征的物體識(shí)別方法,例如基于梯度信息的SIFT/SURF[1]算法等,但隨著數(shù)據(jù)集樣本的增多,逐漸達(dá)到了一定的瓶頸。近年來,基于深度學(xué)習(xí)所提取的抽象特征在物體識(shí)別中取得了非常好的表現(xiàn)。2012年Krizhevsky等人通過使用卷積神經(jīng)網(wǎng)絡(luò)取得了較高的圖像分類準(zhǔn)確率。2014年R. Girshick[2]等人所提出的Region Based CNN算法在目標(biāo)識(shí)別領(lǐng)域也取得了較好的結(jié)果。雖然這些方法取得了較好的效果,但是日常生活中的場(chǎng)景是多變的,因此需要所得到的模型能夠自動(dòng)學(xué)習(xí)和適應(yīng)新的場(chǎng)景和需求,本文將基于RCNN方法提出一種帶反饋的自適應(yīng)學(xué)習(xí)目標(biāo)識(shí)別算法,它隨著反饋的增加,模型越來越完善和智能。
2.相關(guān)技術(shù)介紹
2.1 RCNN算法
Region Based CNN算法首先使用Selective search算法在圖像上產(chǎn)生約2000個(gè)候選窗口,進(jìn)行目標(biāo)檢測(cè)。然后使用CNN對(duì)每一個(gè)候選窗口提取4096維特征來表示每個(gè)Proposal,最后用SVM分類器對(duì)目標(biāo)進(jìn)行分類。
2.2 主動(dòng)反饋學(xué)習(xí)
主動(dòng)學(xué)習(xí)具有減少冗余和快速收斂的優(yōu)勢(shì)。通過一定的主動(dòng)學(xué)習(xí)方法選擇出一個(gè)或一批最有用的樣本,并向檢查者詢問標(biāo)簽,然后利用獲得的新知識(shí)來訓(xùn)練分類器和進(jìn)行下一輪查詢。本文使用主動(dòng)學(xué)習(xí)的思想對(duì)反饋?zhàn)R別過程進(jìn)行控制。
3.基于主動(dòng)學(xué)習(xí)的物體反饋?zhàn)R別
目標(biāo)反饋?zhàn)R別是一個(gè)智能化的交互過程,它先使用有限訓(xùn)練數(shù)據(jù)訓(xùn)練出一個(gè)初始分類模型,這個(gè)模型對(duì)物體進(jìn)行識(shí)別的準(zhǔn)確率可能并不高。接下來,我們希望后續(xù)的每次識(shí)別都能夠?yàn)槟P吞峁┬畔ⅲP鸵罁?jù)這些信息重新訓(xùn)練,實(shí)現(xiàn)對(duì)分類模型的修改與完善。本文基于RCNN算法,首先使用有限標(biāo)定樣本進(jìn)行訓(xùn)練,利用RCNN 生成一個(gè)初始模型。然后每次使用主動(dòng)學(xué)習(xí)的方法,從未標(biāo)記樣本集中選擇出n0個(gè)最有用的、最利于完善分類模型的樣本圖像;最后利用檢查者對(duì)樣本所做的標(biāo)記,進(jìn)一步訓(xùn)練分類器,完善模型,迭代進(jìn)行,最終實(shí)現(xiàn)模型的自動(dòng)更新達(dá)到最優(yōu)的識(shí)別效果。
4.實(shí)驗(yàn)
以1.1圖的Train圖像為例進(jìn)行識(shí)別,圖1.2得到識(shí)別結(jié)果為Bus,識(shí)別發(fā)生錯(cuò)誤,此時(shí)使用本文方法進(jìn)行反饋,系統(tǒng)將結(jié)果反饋給分類模型,這樣選擇出的每張圖像都會(huì)反饋一個(gè)結(jié)果來優(yōu)化模型,迭代進(jìn)行。如果如圖1.3再次對(duì)這張圖像進(jìn)行識(shí)別,得到識(shí)別結(jié)果“未檢測(cè)到Bus”,識(shí)別正確,說明反饋過程起到了應(yīng)有的作用。通過實(shí)驗(yàn)可以表明,本文提出的方法會(huì)使物體識(shí)別變得越來越智能。
5.結(jié)論
本文提出的基于深度神經(jīng)網(wǎng)絡(luò)的目標(biāo)反饋?zhàn)R別方法,使用主動(dòng)學(xué)習(xí)來對(duì)反饋?zhàn)R別過程進(jìn)行控制,通過對(duì)VOC2007數(shù)據(jù)集中的Train類圖像進(jìn)行識(shí)別試驗(yàn)的結(jié)果可以看到,本文提出的方法成功提升了目標(biāo)識(shí)別系統(tǒng)的準(zhǔn)確度和魯棒性,逐漸提升了在復(fù)雜多樣的真實(shí)場(chǎng)景下識(shí)別目標(biāo)的準(zhǔn)確度,使得系統(tǒng)越來越完善與智能,最終實(shí)現(xiàn)了非常好的目標(biāo)識(shí)別效果。
參考文獻(xiàn)
20世紀(jì)80年代以來,全球范圍內(nèi)移動(dòng)無線通信得到了前所未有的發(fā)展,與第三代移動(dòng)通信系統(tǒng)(3g)相比,未來移動(dòng)通信系統(tǒng)的目標(biāo)是,能在任何時(shí)間、任何地點(diǎn)、向任何人提供快速可靠的通信服務(wù)。因此,未來無線移動(dòng)通信系統(tǒng)應(yīng)具有高的數(shù)據(jù)傳輸速度、高的頻譜利用率、低功耗、靈活的業(yè)務(wù)支撐能力等。但無線通信是基于電磁波在自由空間的傳播來實(shí)現(xiàn)傳輸?shù)摹P盘?hào)在無線信道中傳輸時(shí),無線頻率資源受限、傳輸衰減、多徑傳播引起的頻域選擇性衰落、多普勒頻移引起的時(shí)間選擇性衰落以及角度擴(kuò)展引起的空間選擇性衰落等都使得無線鏈路的傳輸性能差。和有線通信相比,無線通信主要由兩個(gè)新的問題。一是通信行道經(jīng)常是隨時(shí)間變化的,二是多個(gè)用戶之間常常存在干擾。無線通信技術(shù)還需要克服時(shí)變性和干擾。由于這個(gè)原因,無線通信中的信道建模以及調(diào)制編碼方式都有所不同。
1.無線數(shù)字通信中盲源分離技術(shù)分析
盲源分離(bss:blind source separation),是信號(hào)處理中一個(gè)傳統(tǒng)而又極具挑戰(zhàn)性的問題,bss指僅從若干觀測(cè)到的混合信號(hào)中恢復(fù)出無法直接觀測(cè)的各個(gè)原始信號(hào)的過程,這里的“盲”,指源信號(hào)不可測(cè),混合系統(tǒng)特性事先未知這兩個(gè)方面。在研究和工程應(yīng)用中,很多觀測(cè)信號(hào)都可以看成是多個(gè)源信號(hào)的混合,所謂“雞尾酒會(huì)”問題就是個(gè)典型的例子。其中獨(dú)立分量分析ica(independent component analysis)是一種盲源信號(hào)分離方法,它已成為陣列信號(hào)處理和數(shù)據(jù)分析的有力工具,而bss比ica適用范圍更寬。目前國(guó)內(nèi)對(duì)盲信號(hào)分離問題的研究,在理論和應(yīng)用方面取得了很大的進(jìn)步,但是還有很多的問題有待進(jìn)一步研究和解決。盲源分離是指在信號(hào)的理論模型和源信號(hào)無法精確獲知的情況下,如何從混迭信號(hào)(觀測(cè)信號(hào))中分離出各源信號(hào)的過程。盲源分離和盲辨識(shí)是盲信號(hào)處理的兩大類型。盲源分離的目的是求得源信號(hào)的最佳估計(jì),盲辨識(shí)的目的是求得傳輸通道混合矩陣。盲源信號(hào)分離是一種功能強(qiáng)大的信號(hào)處理方法,在醫(yī)學(xué)信號(hào)處理,陣列信號(hào)處理,語音信號(hào)識(shí)別,圖像處理及移動(dòng)通信等領(lǐng)域得到了廣泛的應(yīng)用。
根據(jù)源信號(hào)在傳輸信道中的混合方式不同,盲源分離算法分為以下三種模型:線性瞬時(shí)混合模型、線性卷積混合模型以及非線性混合模型。
1.1 線性瞬時(shí)混合盲源分離
線性瞬時(shí)混合盲源分離技術(shù)是一項(xiàng)產(chǎn)生、研究最早,最為簡(jiǎn)單,理論較為完善,算法種類多的一種盲源分離技術(shù),該技術(shù)的分離效果、分離性能會(huì)受到信噪比的影響。盲源分離理論是由雞尾酒會(huì)效應(yīng)而被人們提出的,雞尾酒會(huì)效應(yīng)指的是雞尾酒會(huì)上,有聲、談話聲、腳步 聲、酒杯餐具的碰撞聲等,當(dāng)某人的注意集中于欣賞音樂或別人的談話,對(duì)周圍的嘈雜聲音充耳不聞時(shí),若在另一處有人提到他的名字,他會(huì)立即有所反應(yīng),或者朝 說話人望去,或者注意說話人下面說的話等。該效應(yīng)實(shí)際上是聽覺系統(tǒng)的一種適應(yīng)能力。當(dāng)盲源分離理論提出后很快就形成了線性瞬時(shí)混合模型。線性瞬時(shí)混合盲源分離技術(shù)是對(duì)線性無記憶系統(tǒng)的反應(yīng),它是將n個(gè)源信號(hào)在線性瞬時(shí)取值混合后,由多個(gè)傳感器進(jìn)行接收的分離模型。
20世紀(jì)八、九十年代是盲源技術(shù)迅猛發(fā)展的時(shí)期,在1986年由法國(guó)和美國(guó)學(xué)者共同完了將兩個(gè)相互獨(dú)立的源信號(hào)進(jìn)行混合后實(shí)現(xiàn)盲源分離的工作,這一工作的成功開啟了盲源分離技術(shù)的發(fā)展和完善。在隨后的數(shù)十年里對(duì)盲源技術(shù)的研究和創(chuàng)新不斷加深,在基礎(chǔ)理論的下不斷有新的算法被提出和運(yùn)用,但先前的算法不能夠完成對(duì)兩個(gè)以上源信號(hào)的分離;之后在1991年,法國(guó)學(xué)者首次將神經(jīng)網(wǎng)絡(luò)技術(shù)應(yīng)用到盲源分離問題當(dāng)中,為盲源分離提出了一個(gè)比較完整的框架。到了1995年在神經(jīng)網(wǎng)絡(luò)技術(shù)基礎(chǔ)上盲源分離技術(shù)有了突破性的進(jìn)展,一種最大化的隨機(jī)梯度學(xué)習(xí)算法可以做到同時(shí)分辨出10人的語音,大大推動(dòng)了盲源分離技術(shù)的發(fā)展進(jìn)程。
1.2 線性卷積混合盲源分離
相比瞬時(shí)混合盲源分離模型來說,卷積混合盲源分離模型更加復(fù)雜。在線性瞬時(shí)混合盲源分離技術(shù)不斷發(fā)展應(yīng)用的同時(shí),應(yīng)用中也有無法準(zhǔn)確估計(jì)源信號(hào)的問題出現(xiàn)。常見的是在通信系統(tǒng)中的問題,通信系統(tǒng)中由于移動(dòng)客戶在使用過程中具有移動(dòng)性,移動(dòng)用戶周圍散射體會(huì)發(fā)生相對(duì)運(yùn)動(dòng),或是交通工具發(fā)生的運(yùn)動(dòng)都會(huì)使得源信號(hào)在通信環(huán)境中出現(xiàn)時(shí)間延遲的現(xiàn)象,同時(shí)還造成信號(hào)疊加,產(chǎn)生多徑傳輸。正是因?yàn)檫@樣問題的出現(xiàn),使得觀測(cè)信號(hào)成為源信號(hào)與系統(tǒng)沖激響應(yīng)的卷積,所以研究學(xué)者將信道環(huán)境抽象成為線性卷積混合盲源分離模型。線性卷積混合盲源分離模型按照其信號(hào)處理空間域的不同可分為時(shí)域、頻域和子空間方法。
1.3 非線性混合盲源分離
非線性混合盲源分離技術(shù)是盲源分離技術(shù)中發(fā)展、研究最晚的一項(xiàng),許多理論和算法都還不算成熟和完善。在衛(wèi)星移動(dòng)通信系統(tǒng)中或是麥克風(fēng)錄音時(shí),都會(huì)由于乘性噪聲、放大器飽和等因素的影響造成非線性失真。為此,就要考慮非線性混合盲源分離模型。非線性混合模型按照混合形式的不同可分為交叉非線性混合、卷積后非線性混合和線性后非線性混合模型三種類型。在最近幾年里非線性混合盲源分離技術(shù)受到社會(huì)各界的廣泛關(guān)注,特別是后非線性混合模型。目前后非線性混合盲源分離算法中主要有參數(shù)化方法、非參數(shù)化方法、高斯化方法來抵消和補(bǔ)償非線性特征。
2.無線通信技術(shù)中的盲源分離技術(shù)
在無線通信系統(tǒng)中通信信號(hào)的信號(hào)特性參數(shù)復(fù)雜多變,實(shí)現(xiàn)盲源分離算法主要要依據(jù)高階累積量和峭度兩類參數(shù)。如圖一所示,這是幾個(gè)常見的通信信號(hào)高階累積量。
在所有的通信系統(tǒng)中,接收設(shè)備處總是會(huì)出現(xiàn)白色或是有色的高斯噪聲,以高階累積量為準(zhǔn)則的盲源分離技術(shù)在處理這一問題時(shí)穩(wěn)定性較強(qiáng),更重要的是對(duì)不可忽略的加性高斯白噪聲分離算法同時(shí)適用。因此,由高階累積量為準(zhǔn)則的盲源分離算法在通信系統(tǒng)中優(yōu)勢(shì)明顯。
分離的另一個(gè)判據(jù)就是峭度,它是反映某個(gè)信號(hào)概率密度函數(shù)分布情況與高斯分布的偏離程度的函數(shù)。峭度是由信號(hào)的高階累積量定義而來的,是度量信號(hào)概率密度分布非高斯性大小的量值。
關(guān)鍵詞:機(jī)器視覺與應(yīng)用;創(chuàng)新實(shí)踐;郵電類高校
國(guó)務(wù)院印發(fā)的《新一代人工智能發(fā)展規(guī)劃》中提出了我國(guó)人工智能“三步走”戰(zhàn)略目標(biāo)并深化實(shí)施“中國(guó)制造2025”,將人工智能上升到國(guó)家戰(zhàn)略層面。因此,必須加快推進(jìn)人才培養(yǎng)模式改革,推進(jìn)科教協(xié)同育人,完善高水平科研支撐拔尖創(chuàng)新人才培養(yǎng)機(jī)制。新工科背景下的核心課程機(jī)器視覺與應(yīng)用是郵電類本科學(xué)生的基礎(chǔ)課程,許多高校主要面向自動(dòng)化、計(jì)算機(jī)類等工科專業(yè)開設(shè),此課程融合了機(jī)器學(xué)習(xí)理論,數(shù)字圖像處理,智能決策與最優(yōu)化等技術(shù)[1],教學(xué)內(nèi)容涉及機(jī)器視覺系統(tǒng)的組成與標(biāo)定、圖像濾波與分割、目標(biāo)檢測(cè)與識(shí)別、成像原理與多視圖幾何、三維測(cè)量等。各個(gè)學(xué)校對(duì)該課程的教學(xué)內(nèi)容側(cè)重點(diǎn)不同,培養(yǎng)目標(biāo)也不盡相同,但普遍面臨的問題是:強(qiáng)調(diào)理論知識(shí)點(diǎn)的掌握如定理、證明等,理論教學(xué)內(nèi)容不能與最新技術(shù)發(fā)展同步,實(shí)踐教學(xué)內(nèi)容簡(jiǎn)單、膚淺,不能有效聯(lián)系實(shí)際應(yīng)用或案例。學(xué)生對(duì)這門課缺乏興趣,實(shí)驗(yàn)設(shè)備老舊、編程語言傳統(tǒng),不符合企業(yè)實(shí)際需求,影響學(xué)生就業(yè)與升學(xué)的競(jìng)爭(zhēng)力。因此,為解決上述問題,《機(jī)器視覺與應(yīng)用》這門課程的教學(xué)改革勢(shì)在必行。
一、理論教學(xué)課程體系改革的與時(shí)俱進(jìn)
機(jī)器視覺在我們生活中的應(yīng)用不斷擴(kuò)大,如手機(jī)上的攝像頭系統(tǒng),微信、支付寶的掃碼操作等,因此在《機(jī)器視覺與應(yīng)用》這門課中,在深入講解經(jīng)典機(jī)器視覺知識(shí)的同時(shí),要將當(dāng)前最新的機(jī)器視覺與應(yīng)用的研究成果與行業(yè)前沿知識(shí)在課堂上對(duì)學(xué)生進(jìn)行介紹,如基于稠密深度、輕量化卷積神經(jīng)網(wǎng)絡(luò)的目標(biāo)檢測(cè)與識(shí)別、圖卷積神經(jīng)網(wǎng)絡(luò)等,讓他們了解最新的知識(shí)點(diǎn)與行業(yè)應(yīng)用及當(dāng)前流行的軟件、硬件平臺(tái),為他們以后的學(xué)科研究與就業(yè)奠定良好的基礎(chǔ)。因此,對(duì)課程的培養(yǎng)目標(biāo)與課程體系進(jìn)行了修訂。
新版的《機(jī)器視覺與應(yīng)用》課程以Python語言為基礎(chǔ),要求學(xué)生掌握機(jī)器視覺的概念、原理、圖像處理方法及經(jīng)典視覺成像模型,掌握多視圖幾何及三維重建的原理及實(shí)現(xiàn)方法,學(xué)會(huì)搭建基礎(chǔ)的輕量化卷積神經(jīng)網(wǎng)絡(luò),為進(jìn)一步學(xué)習(xí)人工智能相關(guān)專業(yè)課以及從事本專業(yè)的研究和技術(shù)工作打下必要的基礎(chǔ)。
同時(shí),要充分考慮企業(yè)的需求,以協(xié)同育人的視角構(gòu)建教師和企業(yè)導(dǎo)師聯(lián)合育人團(tuán)隊(duì),因材施教,優(yōu)勢(shì)互補(bǔ)。比如,通過理論講解掌握機(jī)器視覺的圖像濾波與目標(biāo)檢測(cè),借助于生產(chǎn)線現(xiàn)場(chǎng)缺陷目標(biāo)檢測(cè)等工業(yè)應(yīng)用案例掌握理論教學(xué)知識(shí),并反饋理論教學(xué)中未涉及的實(shí)際應(yīng)用要點(diǎn),如算法的實(shí)時(shí)性、檢測(cè)成功率,影響誤檢測(cè)的因素等。
二、創(chuàng)新實(shí)踐教學(xué)平臺(tái)
為了緊跟當(dāng)前機(jī)器視覺與應(yīng)用技術(shù)發(fā)展的潮流,培養(yǎng)人工智能應(yīng)用行業(yè)所急需的專業(yè)人才,在通過課堂將機(jī)器視覺與應(yīng)用專業(yè)理論知識(shí)傳授給學(xué)生的同時(shí),還需啟發(fā)學(xué)生將來在機(jī)器視覺應(yīng)用方面有創(chuàng)新性的成果[2]。
我們構(gòu)建了三種型號(hào)的基于機(jī)器視覺系統(tǒng)的無人車、無人機(jī)等創(chuàng)新實(shí)踐平臺(tái),每一種型號(hào)分別采用英偉達(dá)Nano和樹莓派兩種開發(fā)板,每種開發(fā)板32套,總共192套基于機(jī)器視覺系統(tǒng)的無人平臺(tái)。這些平臺(tái)不僅更好地服務(wù)于機(jī)器視覺與應(yīng)用課程的章節(jié)實(shí)驗(yàn)及綜合性實(shí)驗(yàn),而且還作為實(shí)驗(yàn)室的創(chuàng)新平臺(tái),為智能車比賽,無人機(jī)競(jìng)賽,機(jī)器人大賽提供強(qiáng)有力的支撐。
三、創(chuàng)新實(shí)踐教學(xué)機(jī)器視覺軟件的組成
本課程的章節(jié)實(shí)驗(yàn)及綜合性實(shí)踐提供多種編程語言和工具箱平臺(tái),學(xué)生可以根據(jù)自己的興趣、愛好及未來的學(xué)業(yè)、職業(yè)規(guī)劃選擇一種或多種編程語言及平臺(tái)[3]。在Matlab圖像處理工具箱與OPENCV工具箱的基礎(chǔ)上[4],本課程的實(shí)踐教學(xué)創(chuàng)新性地引入基于Python的機(jī)器視覺與應(yīng)用基礎(chǔ)工具箱、進(jìn)階版深度學(xué)習(xí)工具箱,緊跟當(dāng)前機(jī)器視覺與應(yīng)用課程發(fā)展的技術(shù)潮流。因?yàn)镻ython是一種面向?qū)ο蟆⒔忉屝汀?dòng)態(tài)數(shù)據(jù)類型的高級(jí)程序設(shè)計(jì)語言。其代碼量小,簡(jiǎn)潔清晰。還具有豐富的機(jī)器視覺標(biāo)準(zhǔn)庫(kù)和擴(kuò)充庫(kù),如Pytesseract、OpenCV等,是當(dāng)前人工智能行業(yè)廣泛應(yīng)用的編程工具。
此外,為進(jìn)一步支撐機(jī)器視覺綜合性實(shí)驗(yàn)及基于視覺導(dǎo)航的無人車進(jìn)階實(shí)踐項(xiàng)目,建議學(xué)生學(xué)習(xí)ROS開源的元機(jī)器人操作系統(tǒng),包括硬件抽象、底層設(shè)備控制、常用函數(shù)的實(shí)現(xiàn)、進(jìn)程間消息傳遞以及包管理。上述的OpenCV,Python等機(jī)器視覺工具箱及激光雷達(dá)、IMU慣導(dǎo)模塊以及相應(yīng)的多傳感器標(biāo)定、圖像處理、目標(biāo)識(shí)別與跟蹤、三維重建、SLAM等都可以在此環(huán)境下實(shí)現(xiàn)。
另外,學(xué)生還可以熟悉掌握常用的深度學(xué)習(xí)框架,如PyTorch、TensorFlow、Keras、MXNet等,為將來的工作和學(xué)業(yè)深造打下堅(jiān)實(shí)的基礎(chǔ)。
四、創(chuàng)新實(shí)踐教學(xué)內(nèi)容的設(shè)計(jì)
我結(jié)合機(jī)器視覺與應(yīng)用的理論教學(xué)內(nèi)容,并兼顧實(shí)驗(yàn)室開放創(chuàng)新項(xiàng)目及競(jìng)賽需求,設(shè)計(jì)了漸進(jìn)式創(chuàng)新實(shí)踐教學(xué)內(nèi)容,主要分為三個(gè)級(jí)別:驗(yàn)證性機(jī)器視覺章節(jié)實(shí)驗(yàn)、綜合性視覺及多傳感器融合實(shí)踐項(xiàng)目、創(chuàng)新性實(shí)踐項(xiàng)目。考慮到學(xué)生對(duì)知識(shí)的掌握程度不同,三個(gè)級(jí)別的項(xiàng)目由易到難,循序漸進(jìn),兼顧學(xué)生的興趣愛好及實(shí)際生活中的創(chuàng)意實(shí)現(xiàn)。三個(gè)級(jí)別的實(shí)驗(yàn)及實(shí)踐項(xiàng)目舉例如下:
1.驗(yàn)證性實(shí)驗(yàn):攝像頭啟動(dòng)及驅(qū)動(dòng),圖像預(yù)處理如多彩色空間轉(zhuǎn)化、灰度變化、圖像增強(qiáng)、圖像濾波、銳化、圖像分割與二值化、腐蝕與膨脹、圖像特征提取與匹配等。
2.綜合性實(shí)踐:相機(jī)標(biāo)定實(shí)驗(yàn)及誤差分析,多傳感器聯(lián)合標(biāo)定(相機(jī)、激光雷達(dá)、IMU聯(lián)合標(biāo)定),圖像去霧、去雨、去模糊化等。
3.創(chuàng)新性實(shí)踐:視覺導(dǎo)航,無人車視覺避障,無人車視覺同時(shí)定位與重建,模擬工業(yè)機(jī)器視覺應(yīng)用如智能產(chǎn)品缺陷檢測(cè)、視覺測(cè)量,快遞包裹視覺實(shí)時(shí)追蹤與定位,人流估計(jì)與預(yù)測(cè)等。
驗(yàn)證性實(shí)驗(yàn)是必選的,綜合性及創(chuàng)新性實(shí)踐是以小組完成的,學(xué)生可以跟蹤興趣、愛好選擇不同的題目,提高主觀能動(dòng)性,并允許學(xué)生利用所學(xué)知識(shí)進(jìn)行創(chuàng)新創(chuàng)意性擴(kuò)展。
五、創(chuàng)新實(shí)踐教學(xué)方式改革探索
(一)梳理課程間內(nèi)容關(guān)系,完善相應(yīng)的平臺(tái)、硬件、軟件及相應(yīng)的電子資源建設(shè)
學(xué)生的專業(yè)基礎(chǔ)不同,所掌握編程知識(shí)及實(shí)踐能力有一定的差異性,教師開課前應(yīng)摸底學(xué)生所學(xué)的課程內(nèi)容,了解學(xué)生不同的專業(yè)基礎(chǔ),并進(jìn)行合理的分組、引導(dǎo),使學(xué)生互幫互助;完善實(shí)驗(yàn)室的理論教學(xué)平臺(tái),發(fā)展三種類型多套的無人硬件平臺(tái),建立相應(yīng)的課程電子資源網(wǎng)站,包括理論教學(xué)內(nèi)容知識(shí)點(diǎn)和實(shí)踐教學(xué)內(nèi)容及所需的軟件、教程、工具包,網(wǎng)站上包含專門的知識(shí)內(nèi)容討論區(qū),另外還包括國(guó)內(nèi)外《機(jī)器視覺與應(yīng)用》相應(yīng)的多媒體課件、論文、書籍及經(jīng)典算法的實(shí)現(xiàn)代碼,以適應(yīng)當(dāng)今人工智能行業(yè)內(nèi)機(jī)器視覺知識(shí)的內(nèi)容多、涉及范圍廣、知識(shí)更新快的特點(diǎn),以便學(xué)生下載、查閱。同時(shí),教師要合理利用一些即時(shí)通訊平臺(tái),如微信群、QQ等工具,及時(shí)解答學(xué)生的疑問。
(二)優(yōu)化小班化實(shí)驗(yàn)室課堂,注重學(xué)生知識(shí)的掌握與應(yīng)用
教師要改變往常以教師講解為主,學(xué)生機(jī)械地參與的滿堂灌模式,直接在實(shí)驗(yàn)室采用小班化教學(xué),一次32人,分為四個(gè)小組,每個(gè)小組都要完成三個(gè)級(jí)別的實(shí)驗(yàn),保證每個(gè)組員都要參與,都有相應(yīng)的任務(wù),實(shí)驗(yàn)內(nèi)容盡量避免雷同。每次課2個(gè)課時(shí),教師進(jìn)行0.5課時(shí)基礎(chǔ)理論知識(shí)進(jìn)行透徹地講解;拿出1個(gè)課時(shí)讓學(xué)生進(jìn)行驗(yàn)證性實(shí)驗(yàn),對(duì)基礎(chǔ)知識(shí)進(jìn)行實(shí)現(xiàn)、驗(yàn)證,并進(jìn)行組內(nèi)討論;剩下的0.5個(gè)課時(shí),學(xué)生進(jìn)行綜合性實(shí)踐或創(chuàng)新型實(shí)踐的討論、演示、講解,任課教師進(jìn)行點(diǎn)評(píng)、講解、指導(dǎo)。學(xué)生人手一臺(tái)實(shí)驗(yàn)設(shè)備和電腦(或自帶筆記本),實(shí)驗(yàn)室設(shè)備與學(xué)生一一綁定,不隨意更換,方便理論知識(shí)的掌握、實(shí)現(xiàn)以及相應(yīng)軟件環(huán)境的安裝設(shè)置等,并改變以往提交紙質(zhì)實(shí)驗(yàn)報(bào)告的考核方式,采用分組答辯的形式,每個(gè)人講解展示自己所負(fù)責(zé)的工作,相互學(xué)習(xí)、相互進(jìn)步。這樣可以較好的避免抄襲,避免雷同的實(shí)驗(yàn)報(bào)告,激發(fā)學(xué)生學(xué)習(xí)的積極性和自主性,有利于知識(shí)的拓展和創(chuàng)新創(chuàng)意實(shí)踐。
(三)鼓勵(lì)學(xué)生進(jìn)行應(yīng)用性創(chuàng)新實(shí)踐,并為產(chǎn)學(xué)研合作及企業(yè)實(shí)踐提供支持
學(xué)生在完成多個(gè)實(shí)踐性項(xiàng)目的同時(shí),后續(xù)可能要對(duì)系統(tǒng)硬件、算法軟件進(jìn)行不斷的完善、優(yōu)化。為了使更多的實(shí)踐成果走出實(shí)驗(yàn)室,貼合實(shí)際生產(chǎn)生活,鼓勵(lì)學(xué)生帶成果走出去,教師要主動(dòng)積極聯(lián)系有機(jī)器視覺應(yīng)用需求的企事業(yè)單位,將創(chuàng)新成果與實(shí)際企業(yè)需求、工業(yè)現(xiàn)場(chǎng)要求進(jìn)行深入溝通與協(xié)作,建立穩(wěn)定的產(chǎn)學(xué)研機(jī)制。這種機(jī)制可以對(duì)校內(nèi)課程體系進(jìn)行有效擴(kuò)充和延伸,并對(duì)創(chuàng)新實(shí)踐教學(xué)成果進(jìn)行反饋,更好地貼近實(shí)際生產(chǎn)生活需求,做更接地氣的實(shí)踐教學(xué)內(nèi)容改革探索。同時(shí),教師要鼓勵(lì)學(xué)生進(jìn)行相應(yīng)專利的申請(qǐng)和論文的撰寫,保護(hù)好相應(yīng)的知識(shí)產(chǎn)權(quán)。
關(guān)鍵詞:辛烷值;快速檢測(cè)方法;氣相色譜法;紅外光譜法;拉曼光譜法
中圖分類號(hào):TB 文獻(xiàn)標(biāo)識(shí)碼:A doi:10.19311/ki.1672-3198.2016.07.092
辛烷值是表征車用汽油抗爆性的重要指標(biāo),1926年美國(guó)科學(xué)家埃得將辛烷值引入汽油性能指標(biāo)。汽油在燃燒過程中,抵抗爆震的能力叫作抗爆性,辛烷值就是表示汽油抗爆性的指標(biāo)。辛烷值越高,其抗爆性能越好,汽油在汽缸中燃燒越充分,燃燒效率越高,尾氣排放中的一氧化碳、碳?xì)浠衔锖吭降停瑢?duì)環(huán)境的危害相應(yīng)越小。
馬達(dá)法辛烷值和研究法辛烷值是汽油的辛烷值的傳統(tǒng)測(cè)量方法,方法用樣品量大,時(shí)間長(zhǎng)、費(fèi)用高,不適于生產(chǎn)控制的在線測(cè)試。本文對(duì)近幾年出現(xiàn)的幾種辛烷值測(cè)量的快速分析方法進(jìn)行總結(jié)和綜述,介紹相關(guān)方法的應(yīng)用進(jìn)展。
1 拉曼光譜法
拉曼分析方法作為一種光譜檢測(cè)技術(shù),不僅樣品預(yù)處理簡(jiǎn)單、分析速度快、效率高、重現(xiàn)性好,另外還具有受水分干擾小、樣品無損、可進(jìn)行微量樣品探測(cè)、檢測(cè)頻帶寬、可快速跟蹤反應(yīng)過程等特點(diǎn);即便是非極性基團(tuán)如c=c,c=c等紅外吸收較弱的官能團(tuán),在拉曼光譜中也可以得到很強(qiáng)的吸收譜帶。因此,特別適合用于對(duì)含碳、氫基團(tuán)較高的汽油樣品的辛烷值檢測(cè)。
康健爽等2010年提出了一種使用拉曼分析測(cè)定汽油辛烷值的方法,并設(shè)計(jì)了辛烷值拉曼光譜在線檢測(cè)系統(tǒng)。這種辛烷值在線監(jiān)控系統(tǒng)能夠?qū)崟r(shí)監(jiān)控乙醇汽油中的組分變化,并給出對(duì)應(yīng)的拉曼分析曲線;根據(jù)光柵型和傅立葉變換型光譜儀各自特點(diǎn),選用光柵型拉曼光譜儀應(yīng)用于辛烷值在線檢測(cè)。以Lambert-Beer定律為基礎(chǔ),采用化學(xué)計(jì)量學(xué)方法,將檢測(cè)數(shù)據(jù)和采用標(biāo)準(zhǔn)方法測(cè)得的屬性數(shù)據(jù)之間關(guān)聯(lián),建立分析模型,在具體算法實(shí)現(xiàn)過程中,分別采用PCA和PLS兩種方法建立關(guān)聯(lián)分析模型,并用于乙醇汽油辛烷值的快速預(yù)測(cè),指導(dǎo)實(shí)際調(diào)和過程。實(shí)踐證明,相對(duì)傳統(tǒng)的檢測(cè)手段,該系統(tǒng)具有測(cè)試速度快、分析時(shí)間短、檢測(cè)費(fèi)用低、經(jīng)濟(jì)效益高等特點(diǎn)。
2 氣相色譜法
李長(zhǎng)秀等2003年建立了一種新方法,該方法將氣相色譜結(jié)果關(guān)聯(lián)建模用以計(jì)算汽油樣品的辛烷值。對(duì)汽油的組成采用高分辨毛細(xì)管柱進(jìn)行測(cè)定,根據(jù)汽油單體烴組分的含量和純組分辛烷值乘積的大小,將單體烴組分分為兩組,每一組為一個(gè)變量,建立實(shí)測(cè)辛烷值與兩個(gè)變量間的回歸模型。實(shí)際分析時(shí),根據(jù)樣品的類型帶入相應(yīng)的模型進(jìn)行關(guān)聯(lián)計(jì)算即可得到樣品的辛烷值。該方法與采用標(biāo)準(zhǔn)方法測(cè)定催化裂化汽油辛烷值的結(jié)果相比,測(cè)定結(jié)果的偏差約0.5個(gè)單位。該方法因?yàn)椴僮飨鄬?duì)簡(jiǎn)單,樣品量耗費(fèi)少,且建模過程快速、簡(jiǎn)便,適于穩(wěn)定工藝過程中的汽油辛烷值的在線監(jiān)測(cè)。
于愛東等采用毛細(xì)管氣相色譜法對(duì)汽油單體烴類進(jìn)行分離,用PONA汽油組成軟件對(duì)汽油單體烴進(jìn)行定性、定量、Pona組成計(jì)算.將汽油單體烴分為37組,建立實(shí)測(cè)辛烷值與37個(gè)變量之間的回歸模型,計(jì)算汽油辛烷值。該模型計(jì)算辛烷值與實(shí)測(cè)辛烷值的極差為0.26個(gè)單位,適用辛烷值在88~92之間的油品。辛烷值的計(jì)算公式能夠較好地反映汽油單體烴與辛烷值之間的關(guān)系。方法操作簡(jiǎn)單,樣品用量少,結(jié)果準(zhǔn)確,適合于煉廠蒸餾、催化過程中汽油辛烷值的實(shí)時(shí)監(jiān)測(cè)。
3 近紅外光譜法
近紅外光譜分析方法是一種間接分析方法,它先利用一組汽油標(biāo)準(zhǔn)樣品,在汽油的近紅外光譜數(shù)據(jù)間和汽油辛烷值建立數(shù)據(jù)關(guān)聯(lián)分析模型,再用該模型預(yù)測(cè)未知汽油樣品的辛烷值。測(cè)量精度除受儀器精度影響外,還受所建分析模型精度影響。
韓言正等介紹了一種自主開發(fā)研制的汽油辛烷值近紅外光譜在線分析儀。該分析儀包括近紅外光譜在線測(cè)量、光譜預(yù)處理和實(shí)時(shí)建模等部分。對(duì)于原始的近紅外光譜數(shù)據(jù),采用多項(xiàng)式卷積算法進(jìn)行光譜平滑、基線校正和標(biāo)準(zhǔn)歸一化;通過模式分類與偏最小二乘進(jìn)行實(shí)時(shí)建模。該分析儀已成功應(yīng)用于某煉油廠生產(chǎn)過程的辛烷值在線監(jiān)測(cè)。
汽油辛烷值預(yù)測(cè)體系具有非線性的特點(diǎn),史月華等據(jù)此提出主成分回歸殘差神經(jīng)網(wǎng)絡(luò)校正算法(PCRRANN)用于近紅外測(cè)定汽油辛烷值的預(yù)測(cè)模型校正。該方法結(jié)合了主成分回歸算法(PC),與PLS(PartialLeastSquare),PCR,PLS(NPLS,Non lin-earPLS)等經(jīng)典校正算法相比,預(yù)測(cè)能力有明顯的提高。
獨(dú)立分量分析(ICA)是統(tǒng)計(jì)信號(hào)處理近年來的一項(xiàng)發(fā)展。顧名思義,這是一種分解技術(shù),其特點(diǎn)是把信號(hào)分解成若干相互獨(dú)立的成分。主分量分析(PCA)和奇異值分解(SVD)是人們較熟悉的分解信號(hào)的線性代數(shù)方法,ICA與它們的主要不同之處表現(xiàn)在:
(1)后者只要求分解出來的各分量互相正交(不相關(guān)),但并不要求它們互相獨(dú)立。用統(tǒng)計(jì)信號(hào)處理的語言來表達(dá),即:后者只考慮二階統(tǒng)計(jì)特性,而前者則要更全面考慮其概率密度函數(shù)的統(tǒng)計(jì)獨(dú)立性。
(2)后者按能量大小排序來考慮被分解分量的重要性。這樣的分解雖然在數(shù)據(jù)壓縮和去除弱噪聲方面有其優(yōu)點(diǎn),但分解結(jié)果往往缺乏明確的生理意義。前者雖然分解出的分量其能量大小存在不確定性,但當(dāng)測(cè)量值確實(shí)是由若干獨(dú)立信源混合而成時(shí),分解結(jié)果往往具有更好的生理解釋。由于測(cè)得的生理信號(hào)往往是若干獨(dú)立成分的加權(quán)迭加(例如,誘發(fā)腦電總是被自發(fā)腦電所淹沒,而且常伴隨有心電、眼動(dòng)、頭皮肌電等干擾),此ICA是一項(xiàng)值得注意的分解方法。
此外,神經(jīng)生理研究認(rèn)為,人類對(duì)認(rèn)知、感知信息的前期處理有“去冗余”的特點(diǎn)。ICA在這方面也表現(xiàn)出類似特性,因?yàn)榛ハ嗒?dú)立的分量之間互信息是最少的。ICA是伴隨著盲信號(hào)處理,特別是盲信源分離發(fā)展起來。其研究熱潮方興未艾,也正在引起生物醫(yī)學(xué)工程界的注意,IEEETransBME正在組織出版以它為重點(diǎn)的專輯。就國(guó)際范圍看,以下幾個(gè)研究單位目前工作比較領(lǐng)先:(1)美國(guó)加州大學(xué)生物系計(jì)算神經(jīng)生物學(xué)實(shí)驗(yàn)室,(2)日本Riken腦科學(xué)研究所腦信息研究室,(3)芬蘭赫爾辛基工業(yè)大學(xué)計(jì)算機(jī)及信息科學(xué)實(shí)驗(yàn)室,目前發(fā)表有關(guān)文獻(xiàn)較多的刊物有IEEETrans的SP和NN以及NeuralComputation等。本文目的是對(duì)ICA的原理、算法及應(yīng)用作一簡(jiǎn)述,以引起國(guó)內(nèi)同行對(duì)它的關(guān)注。將側(cè)重于概念說明,而不追求數(shù)學(xué)上的嚴(yán)謹(jǐn)性。
2原理
2.1問題的提法,s-(n)是一組互相獨(dú)立的信源,A是混合矩陣,x-(n)是觀察記錄,即x-(n)=As-(n)。問題的任務(wù)是:在A陣未知且對(duì)s-(n)除獨(dú)立性外無其它先驗(yàn)知識(shí)的情況下,求解混矩陣B,使得處理結(jié)果y-(n)=Bx-(n)中各分量盡可能互相獨(dú)立,且逼近s(n)。容易理解,解答不是唯一的,它至少受以下條件的限制:(1)比例不定性:s-(n)中某一分量大K倍時(shí),只要使相應(yīng)的A陣系數(shù)減小K倍,x-(n)便保持不變。
因此,求解時(shí)往往把s-(n)假設(shè)成具有單位協(xié)方差陣,即s-中各分量均值為零,方差為1,且互相獨(dú)立。(2)排序不定性:y-與s-中各分量排序可以不同。因?yàn)橹灰獙?duì)調(diào)B陣中任意兩行,y-中相應(yīng)元素的位置也便對(duì)調(diào)。(3)s-(n)中至多只能有一個(gè)高斯型信源:這是因?yàn)楦咚剐旁吹木€性組合仍是高斯型的,因此混合后便無法再區(qū)別。(4)信源數(shù)目N只能小于或等于觀測(cè)通道數(shù)M。N>M情況目前尚未解決。以下討論設(shè)M=N。因此,y-(n)只是在上述條件下對(duì)s-(n)的逼近。換名話說,任務(wù)的實(shí)質(zhì)是優(yōu)化問題,它包括兩個(gè)主要方面:優(yōu)化判據(jù)(目標(biāo)函數(shù))和尋優(yōu)算法。
2.2目標(biāo)函數(shù)
這一領(lǐng)域的研究者已經(jīng)從不同角度提出了多種判據(jù)。其中以互信息極小判據(jù)(MinimizationofMutualInformation,簡(jiǎn)記MMI)和信息或熵極大判據(jù)(Informax或MaximizationofEntropy,簡(jiǎn)記ME)應(yīng)用最廣。由于最基本的獨(dú)立性判據(jù)應(yīng)由概率密度函數(shù)(probabilitydensityfunction,簡(jiǎn)記pdf)引出,而工作時(shí)pdf一般是未知的,估計(jì)它又比較困難,因此通常采用一些途徑繞過這一困難。
常用的方法有兩類:①把pdf作級(jí)數(shù)展開,從而把對(duì)pdf的估計(jì)轉(zhuǎn)化為對(duì)高階統(tǒng)計(jì)量的估計(jì);②在圖1的輸出端引入非線性環(huán)節(jié)來建立優(yōu)化判據(jù)。后一作法實(shí)際上隱含地引入了高階統(tǒng)計(jì)量。(1)互信息極小判據(jù):統(tǒng)計(jì)獨(dú)立性的最基本判據(jù)如下:令p(y-)是y-的聯(lián)合概率密度函數(shù),pi(yi)是y-中各分量的邊際概率密度函數(shù)。當(dāng)且僅當(dāng)y-中各分量獨(dú)立時(shí)有:p(y-)=∏Ni=1pi(yi)因此用p(y-)與∏i=1pi(yi)間的Kullback-Leibler散度作為獨(dú)立程度的定量度量:I(y-)=KL[p(y-),∏Ni=1pi(yi)]=∫p(y-)log[p(y-)∏Ni=1pi(yi)]dy-(1)顯然,I(y-)0,當(dāng)且僅當(dāng)各分量獨(dú)立時(shí)I(y-)=0。因此,互信息極小判據(jù)的直接形式是:在y-=Bx-條(文秘站:)件下尋找B,使(1)式的I(y-)極小為了使判據(jù)實(shí)際可用,需要把I(y-)中有關(guān)的pdf展成級(jí)數(shù)。
由于在協(xié)方差相等的概率分布中高斯分布的熵值最大,因此展開時(shí)常用同協(xié)方差的高斯分布作為參考標(biāo)準(zhǔn)。例如,采用Gram-Charlier展開時(shí)有:P(yi)PG(yi)=1+13!k2yih3(y-i)+14!k4yih4(yi)+…式中PG(yi)是與P(yi)具有同樣方差(σ2=1)和均值(μ=0)的高斯分布。k3yi、k4yi是yi的三、四階累計(jì)量(cumulant),hn(yi)是n階Hermit多項(xiàng)式。此外還有許多其他展開辦法,如Edgeworth展開,利用負(fù)熵(Negentropy)等。不論采用何種展開方式,經(jīng)推導(dǎo)后總可把式(1)近似改成k3、k4的函數(shù):I(y)=F(k3y-,k4y-,B)(1)’F(·)的具體形式多種多樣,視推導(dǎo)時(shí)的假設(shè)而異。
這樣就得到互信息判據(jù)的實(shí)用近似形式:在y-=Bx-條件下尋找B,使式(1)的I(y-)極小(2)Infomax判據(jù):這一判據(jù)的特點(diǎn)是在輸出端逐分量地引入一個(gè)合適的非線性環(huán)節(jié)把yi轉(zhuǎn)成ri(如圖2)。可以證明,如果gi(·)取為對(duì)應(yīng)信源的累積分布函數(shù)cdf(它也就是概率密度函數(shù)的積分),則使r-=(r1…rN)T的熵極大等效于使I(y-)極小,因此也可達(dá)使y-中各分量獨(dú)立的要求。從而得到Infomax判據(jù):在選定適當(dāng)gi(·)后,尋找B使熵H(r-)極大需要指出的是,雖然理論上gi(·)應(yīng)取為各信源的cdf,但實(shí)踐證明此要求并不很嚴(yán)格,有些取值在0~1之間的單調(diào)升函數(shù)也可以被采用,如sigmoid函數(shù)、tanh(·)等。估計(jì)H(r-)固然也涉及pdf,但由于其作用已通過gi(·)引入,所以可以不必再作級(jí)數(shù)展開而直接用自適應(yīng)選代尋優(yōu)步驟求解。文獻(xiàn)中還提出了一些其他判據(jù),如極大似然、非線性PCA等,但它們本質(zhì)上都可統(tǒng)一在信息論的框架下,所以不再一一列舉[1]。
3處理算法優(yōu)化算法
可大致分為兩類,即批處理與自適應(yīng)處理。
3.1批處理批處理比較成熟的方法有兩類。較早提出的是成對(duì)旋轉(zhuǎn)法[2],其特點(diǎn)是把優(yōu)化過程分解成兩步。先把x-(n)經(jīng)W陣加以“球化”得z-(n),使z-(n)T=IN,即:各分量不相關(guān)且方差為1,然后再尋找合適的正交歸一陣U達(dá)到使y-各分量獨(dú)立的目的。前一步類似于PCA,后一步則可利用Givens旋轉(zhuǎn),根據(jù)目標(biāo)函數(shù),將z-中各分量?jī)蓛沙蓪?duì)反復(fù)旋轉(zhuǎn)直到收斂。這種方法計(jì)算量較大。1999年,Gadoso提出幾種方法對(duì)它作了進(jìn)一步改進(jìn)[3],其中包括:Maxkurt法、JADE法、SHIBBS法等,限于篇幅,本文不再敘述。近年來,提出的另一類方法是所謂“固定點(diǎn)”法(FixedPointMethod)[4,5
],其思路雖來源于自適應(yīng)處理,但最終算法屬于批處理。
簡(jiǎn)單地說,通過隨機(jī)梯度法調(diào)節(jié)B陣來達(dá)到優(yōu)化目標(biāo)時(shí),有:B(k+1)=B(k)+ΔB(k)ΔB(k)=-μεkB(k)式中k是選代序號(hào),εk是瞬時(shí)目標(biāo)函數(shù)。當(dāng)?shù)竭_(dá)穩(wěn)態(tài)時(shí)必有[E是總集均值算子]:E[ΔB(k)]=0(2)如果ΔB(k)與B(k)有關(guān),就可由(2)式解出B的穩(wěn)態(tài)值。不過由于(2)式總是非線性方程,因此求解時(shí)仍需要采用數(shù)值方法(如牛頓法、共軛梯度法等)迭代求解。實(shí)踐證明,不論是收斂速度還是計(jì)算量,此法均優(yōu)于前一種方法,而且它還可以根據(jù)需要逐次提取最關(guān)心的yi,因此是一類值得注意的方法。
3.2結(jié)合神經(jīng)網(wǎng)絡(luò)的自適應(yīng)處理結(jié)合神經(jīng)網(wǎng)絡(luò)的自適應(yīng)處理算法的框圖。1994年Cichocki提出的調(diào)節(jié)算法是:B(k+1)=B(k)+ΔB(k)ΔB(k)=μk[I-Ψ(y-k)ΦT(y-k)]B(k)式中Ψ、Φ都是N維矢量,其各元素都是單調(diào)升的非線性函數(shù):Ψ(yk)=sgnyk·y2k,ΦTy-k=3tanh(10yk)所得結(jié)果雖令人鼓舞,但是方法是經(jīng)驗(yàn)性的。其后學(xué)者們從理論上沿著這一方向作了更深入的討論,并發(fā)展出多種算法。概括地說,主要發(fā)展有以下幾點(diǎn):
(1)引入自然梯度(或相對(duì)梯度)。按照最陡下降的隨機(jī)梯度法推導(dǎo)出的系數(shù)調(diào)節(jié)公式往往具有如下一般形式:ΔB(k)=μk[B-T(k)-Ψ(y-k)x-Tk]式中的Ψ(y-k)視具體算法而異。Infomax法中Ψ(·)由所選用的g(·)決定;MMI法中則與yk的三、四階矩有關(guān)。B-T(k)是矩陣求逆再轉(zhuǎn)置,它的計(jì)算量很大。Amari[7]在1998年提出將最陡下降梯度改為“自然梯度”,兩者間關(guān)系是:[自然梯度]=[最陡下降梯度]·BT(k)B(k)于是有:ΔB(k)=μk[B-T(k)-Ψ(y-k)x-Tk]BT(k)B(k)=μk[I-Ψ(y-k)y-Tk]B(k)由于此式避免了矩陣求逆,因此計(jì)算量明顯降低且收斂加快。目前,這一作法已被普遍接受。
(2)引入自然梯度后,采用不同的優(yōu)化判據(jù)得出的調(diào)節(jié)公式雖各有千秋,但大致都可表示為如下的“串行更新”形式:B(k+1)=B(k)+ΔB(k)=[I+H(y-k)]B(k)只是H(y-k)的具體形式各不相同。串行矩陣更新的算法還具有一些理論上值得注意的性質(zhì),如均勻特性(uniformproperty)和等變性(equivariant)等[8,9]。
(3)四階累計(jì)量k4>0的超高斯信號(hào)和k4<0的欠高斯信號(hào),其處理過程應(yīng)當(dāng)予以區(qū)別。采用同一算法效果往往不好。目前的辦法多是在調(diào)節(jié)公式中引入一個(gè)開關(guān)。根據(jù)估計(jì)得k4的符號(hào)來切換不同算法,如擴(kuò)展的Infomax法就是一例[10]。此法的系數(shù)調(diào)節(jié)公式是:ΔB(k)=μk[I-Ktanh(y-k)·y-Tk-y-ky-Tk]B(k)其中K是對(duì)角陣,其對(duì)角元素之值為+1或-1,視該信號(hào)分量k4>0或<0而定。為了實(shí)時(shí)應(yīng)用,估計(jì)K4也可采用遞歸算法。總之,自適應(yīng)算法是目前采用較廣的方法。
4應(yīng)用舉例
4.1仿真計(jì)算為檢驗(yàn)經(jīng)ICA算法分解信源的能力,左圖是一組源信號(hào),它們對(duì)系統(tǒng)來說是未知的。這一組信號(hào)經(jīng)混合后的觀察信號(hào)作為(中圖所示)ICA算法的輸入,分解后的結(jié)果如右圖所示。可以看到,除了波形的次序、極性和波幅發(fā)生變化之外,源信號(hào)的波形被很好地分解出來。一般情況下,臨床腦電信號(hào)中既有超高斯成分(如誘發(fā)電位),也有亞高斯成分(如肌電和工頻干擾)。為了檢驗(yàn)擴(kuò)展Infomax算法處理這類情況的能力,我們又用此法進(jìn)行了如圖6所示仿真實(shí)驗(yàn)。左圖第一行是一段自發(fā)腦電信號(hào),第二行是仿真的視覺誘發(fā)電位,第三行是肌電干擾。混合后的信號(hào)(圖中第二列所示)經(jīng)ICA分解得到如右圖所示的結(jié)果。這一結(jié)果表明擴(kuò)展ICA算法在同時(shí)存在超高斯和亞高斯信號(hào)的情況下,仍然能夠很好地實(shí)現(xiàn)盲分解。但應(yīng)指出:這一仿真結(jié)果并不說明通過ICA分解就能直接得到視覺誘發(fā)電位,因?yàn)檫€沒有涉及頭皮上的多導(dǎo)數(shù)據(jù)。
4.2實(shí)驗(yàn)VEP分析(1)多導(dǎo)腦電觀察中VEP的增強(qiáng):需要強(qiáng)調(diào),把多導(dǎo)腦電作ICA分解后直接取出其中與VEP有關(guān)的成分,得到的并不是頭皮電極處的VEP分量,因?yàn)樗鼈冎皇欠纸獬鰜淼男旁?而這些信源的位置并不在頭皮上,為了得到電極處測(cè)量值中的VEP成分,需按下述步驟處理:用訓(xùn)練得的W陣直接對(duì)頭皮上取得的多導(dǎo)腦電數(shù)據(jù)進(jìn)行ICA分解,得到各獨(dú)立分量組成的矩恥y=Bx(見圖7a);再根據(jù)各分量的波形特征及產(chǎn)生時(shí)段,選擇與VEP有關(guān)的一部分分量(例如在前300ms中具有較大幅度的分量),并將其余分量置0,得到新的獨(dú)立分量矩陣y’;再反變換回頭皮各電極處得x’=B-1-y’。這樣才能得到去除噪聲和干擾后各電極處的VEP。
采用這樣的方法可顯著地減少提取VEP所需要的累加次數(shù)。左圖是經(jīng)3次累加所得VEP,中圖是經(jīng)50次累加所得結(jié)果,右圖則是用左圖經(jīng)圖7中ICA處理后提取的VEP。比較中、右兩圖,兩者波形趨勢(shì)基本相同,但后者比前者其主要峰、谷顯然更清楚,而累加次數(shù)由50減到3。(2)ICA分量的空間模式:把某一個(gè)ICA分量的瞬時(shí)值經(jīng)B-1逆推回頭皮各電極處得x-’后,就可以按斷層圖的插補(bǔ)方法得到該時(shí)該分量在頭皮上的空間分布模式。這個(gè)空間分布模式也可以用更簡(jiǎn)單辦法得到:只要把逆矩陣B-1中相應(yīng)于某ICA分量的列中各元素的值賦與頭皮各電極處,再作斷層圖插值,就可以表現(xiàn)該ICA分量在任意時(shí)刻的空間分布模式。也就是:x’i(t)=b’ijy’j(t),i=1~N式中b’ij是B-1的第i行第j列元素。
可見ICA分量y’j(t)在頭皮各電極處的對(duì)應(yīng)值等于用逆陣B-1第j列各元素來對(duì)y’j(t)加權(quán)。因此,列矢量b’j=[b’1,…,b’Nj]可以用來統(tǒng)一地表現(xiàn)任意時(shí)刻y’j的空間模式。
5總結(jié)與展望
本文粗略介紹了ICA的原理、算法和應(yīng)用,可以看到ICA確是一個(gè)值得注意的研究方向,但其理論體系尚未完整,實(shí)際采用的處理方法多少還帶有經(jīng)驗(yàn)性。例如為什么對(duì)非線性特性gi的要求不甚嚴(yán)格就沒有明確解釋;又如算法的穩(wěn)定性、收斂性在實(shí)踐中是經(jīng)常遇到的問題。從應(yīng)用方面看也還有許多待開發(fā)的領(lǐng)域,例如如何應(yīng)用于生理信號(hào)的模式識(shí)別與系統(tǒng)建模等。從生物醫(yī)學(xué)信號(hào)分析的角度看,還有一些亟待深入的問題。例如:
(1)在以上分析中混合陣A被假設(shè)為恒定。這對(duì)靜態(tài)的圖像分析或固定信源是合理的;但在生理實(shí)際中,等效信源一般在空間并不固定,因而混合陣A應(yīng)視為時(shí)變的,而且傳導(dǎo)過程中還會(huì)引入容積導(dǎo)體的卷積及遲作用。這可能是實(shí)際生理信號(hào)分解結(jié)果不夠理想的原因之一。
(2)一般公認(rèn),生理信號(hào)的非平穩(wěn)性較強(qiáng),而以上分析并沒有考慮信號(hào)的非平穩(wěn)性。
這種曾經(jīng)的航拍專業(yè)工具正在消除極客產(chǎn)品的烙印,每一家無人機(jī)廠商都極力降低使用門檻,為小白級(jí)用戶增加了自動(dòng)返航、自動(dòng)避障等傻瓜式操作功能。在當(dāng)時(shí),王孟秋思考過一個(gè)問題:當(dāng)無人機(jī)生產(chǎn)商大疆科技已經(jīng)牢牢控制了71%的消費(fèi)無人機(jī)市場(chǎng)份額后,創(chuàng)業(yè)公司的機(jī)會(huì)在哪里?
2014年5月,王孟秋回國(guó)創(chuàng)辦了零零無限,在此之前,他在斯坦福大學(xué)攻讀計(jì)算機(jī)專業(yè)的博士。事實(shí)上,和父母旅行的經(jīng)歷啟發(fā)了王孟秋回國(guó)開發(fā)無人機(jī)的想法―他發(fā)現(xiàn)家庭合影時(shí)要么用自拍桿,要么交給路人拍照,合照的背景或許不同,但人的表情和姿勢(shì)永遠(yuǎn)一樣。“很多次家庭出游都差不多,拍照體驗(yàn)完全是破碎的。”王孟秋說,“但自拍無人機(jī)可以將拍照的意義還原為捕捉生命中的美好瞬間。”
和吸引極客用戶的航拍消費(fèi)無人機(jī)相比,王孟秋認(rèn)為自拍無人機(jī)事實(shí)上在生活場(chǎng)景中將有更高的使用頻率,比如,朋友聚會(huì)的后院BBQ,兒子的一場(chǎng)兒童球賽,也可以是周末跟家里寵物在草坪上嬉戲的畫面。另一方面,低空近景人物拍攝、使用場(chǎng)景更為生活化的“飛行相機(jī)”,也能和大疆系列航拍無人機(jī)的產(chǎn)品定位區(qū)隔開來。
2016年10月,團(tuán)隊(duì)推出了跟拍無人機(jī)Hover Camera小黑俠,這是一款能跟拍、提供更多視角和錄制運(yùn)動(dòng)片段的無人機(jī)。2016年,它已獲得了總額2500萬美元的融資,其中天使輪200萬美元和A輪融資2300萬美元,投資方包括IDG、金沙江創(chuàng)投、真格基金、ZUIG等。
直觀上,Hover Camera像兩層扁扁的鏤空黑色盒子。這其實(shí)是兩個(gè)折疊的碳纖維保護(hù)罩,里面有四翼螺旋槳,飛行時(shí)展開,長(zhǎng)度不及一部iPhone 7 Plus,重量也才238克。
為了能夠讓更多小白用戶使用,在操作方面,Hover Camera棄用了傳統(tǒng)的無人機(jī)遙控器,起飛、飛行和降落直接在手機(jī)上操控,不過和航拍無人機(jī)不同的是,Hover Camera開發(fā)了人機(jī)交互的“指尖放飛”―托著無人機(jī)的指尖上,Hover Camera可以輕盈起飛,即便在狹小的室內(nèi),它也能周轉(zhuǎn)或懸停,發(fā)出嗡嗡的響聲。 >> 和吸引極客用戶的航拍消費(fèi)無人機(jī)相比,王孟秋認(rèn)為自拍無人機(jī)事實(shí)上在生活場(chǎng)景中將有更高的使用頻率。
“航拍無人機(jī)是為了拍‘景’,飛高飛遠(yuǎn),拍遠(yuǎn)山,拍大橋,拍沙灘。零零無限推出的Hover Camera是為了拍‘你’。”零零無限產(chǎn)品經(jīng)理劉力心說。在他看來,這是兩種不同的鏡頭語言―Hover Camera無人機(jī)拍攝以人為中心,比如同樣是拍攝跳水,航拍無人機(jī)的產(chǎn)品拍攝的是宏大的跳水場(chǎng)景,但零零無限想做的是人物跟蹤拍 攝。
即便如此小的Hover Camera仍包含300余個(gè)元器件,從機(jī)械結(jié)構(gòu)設(shè)計(jì)到電機(jī)、旋翼設(shè)計(jì),都需要從頭開始,況且硬件之外還有嵌入式系統(tǒng)、飛行控制系統(tǒng)、用于跟拍的機(jī)器視覺,以及對(duì)iOS和安卓等手機(jī)系統(tǒng)的適配。“所有的東西都是我們自己做的。”王孟秋說。
對(duì)于零零無限來說,創(chuàng)業(yè)過程是從不懂到懂的學(xué)習(xí)過程,早期最大的門檻還是在軟件上。“硬件是打磨得出來的,但是軟件上需要長(zhǎng)時(shí)間積累。”在Hover Camera上沒有雙目攝像頭,全靠軟件的優(yōu)化來支持單攝像頭與人控制相對(duì)距離。
此外,王孟秋一早就確定“安全飛行”是Hover Camera的核心競(jìng)爭(zhēng)力之一。
在零零無限團(tuán)隊(duì)看來,一個(gè)旋翼高速旋轉(zhuǎn)的飛行器,無論多小,都會(huì)有誤傷人的危險(xiǎn)。在產(chǎn)品設(shè)計(jì)中,不同于業(yè)內(nèi)普遍使用避障技術(shù)來實(shí)現(xiàn)安全保護(hù),Hover Camera的做法是加入帶“保護(hù)罩”的外殼。在蘋果專賣店內(nèi),除了Hover Camera,其他無人機(jī)都禁止試飛。他們認(rèn)為有了保護(hù)罩的Hover Camera不會(huì)傷到人,而其他無人機(jī)的避障軟件技術(shù)不能確保沒有故障。
為了方便攜帶,在原型機(jī)的材質(zhì)選擇上,團(tuán)隊(duì)考慮過用鋁鎂合金、塑料或加纖塑料來制作保護(hù)罩,但因?yàn)槿菀鬃冃位蜻^軟等會(huì)造成安全隱患的原因,Hover Camera最終使用了既堅(jiān)固又輕盈的碳纖維。但隨之而來的是成本大幅增加,制成這樣的保護(hù)罩,需要經(jīng)過CNC切割、拋光、烤漆等幾十道工序,讓Hover Camera的銷售價(jià)格攀升至599美元。
這是一個(gè)在安全和成本之間權(quán)衡的問題,團(tuán)隊(duì)考慮后選擇了前者。如果去掉保護(hù)罩,Hover Camera以單電池可以飛24分鐘,可是以現(xiàn)在的形態(tài)只能飛10分鐘,一些用戶也質(zhì)疑10分鐘的飛行不符合“自拍”這種高重復(fù)性的行為。同時(shí),因?yàn)楸Wo(hù)罩帶來的側(cè)向風(fēng)阻加大,當(dāng)戶外風(fēng)大的時(shí)候,Hover Camera的穩(wěn)定性很難保證。
但是零零無限仍然堅(jiān)持做保護(hù)罩。“我不想做航拍,我們想做的是私人攝影師,就像家里多了一個(gè)人一樣。”王孟秋說。依據(jù)王孟秋的判斷,隨著人工智能的發(fā)展,人類拍照這件事情很可能被顛覆。“給機(jī)器兩三年的發(fā)展,它會(huì)懂得構(gòu)圖、取景、拍照。”
事實(shí)上,你可以把Hover Camera看作一個(gè)會(huì)飛的小機(jī)器人,它每秒鐘拍攝30幀,每一幀都要確保人物在畫面中間位置不變,也就是說它每時(shí)每刻都在構(gòu)圖。
跟拍無人機(jī)的核心在于自動(dòng)化捕捉到隨時(shí)變化的人物動(dòng)作,比如扣籃的瞬間,這就要求零零無限團(tuán)隊(duì)在跟人算法上做出深度優(yōu)化。團(tuán)隊(duì)在一顆高通驍龍801芯片上實(shí)現(xiàn)了基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的人臉人形檢測(cè)算法,在用戶選定需要跟隨的人形之后,跟隨部分采用Hover Camera的跟蹤算法。
在Hover Camera上市前,在美國(guó)蘋果總部,出于受眾、用戶體驗(yàn)和設(shè)計(jì)元素的匹配,零零無限與蘋果達(dá)成了合作。在與蘋果生態(tài)做了諸多適配和兼容―如影像編輯軟件、文件系統(tǒng)―完成了多國(guó)的本地化工作后,Hover Camera先是@準(zhǔn)進(jìn)入5個(gè)國(guó)家和地區(qū)的蘋果專賣店,隨后國(guó)家數(shù)擴(kuò)展到30余個(gè)。
至今,Hover Camera并未開設(shè)自己的線下實(shí)體店,只是在蘋果店和線上銷售。王孟秋不愿透露銷量,但也不諱言其在產(chǎn)能上的爬坡,到今年5月才實(shí)現(xiàn)產(chǎn)能充足,而線上銷售是積累產(chǎn)能比較好的方式。
從2016年10月正式到現(xiàn)在,Hover Camera大的固件升級(jí)已經(jīng)有5次,從UI到交互界面都和最初的版本完全不同了。
第一版的Hover Camera軟件界面有點(diǎn)兒像大疆的遙控器操作,但現(xiàn)在則以用戶社區(qū)為主體;它跟蹤人的模式和方式也都與第一版大有區(qū)別:第一版,Hover Camera有兩種跟蹤模式,一種是只跟著面部,另一種則是整個(gè)人都需要入鏡。當(dāng)初的兩種模式是為了區(qū)別近景拍攝和跟拍,但如今通過影像識(shí)別的優(yōu)化,無人機(jī)能自動(dòng)切換,不需要用戶自己區(qū)分。
關(guān)鍵詞:科學(xué)計(jì)算;大數(shù)據(jù)處理;超級(jí)計(jì)算機(jī);模擬仿真;并行計(jì)算
1引言
在現(xiàn)代科學(xué)研究和工程實(shí)踐中,通常使用數(shù)學(xué)方程式來表示某些自然科學(xué)規(guī)律,產(chǎn)生了眾多復(fù)雜繁瑣的數(shù)學(xué)計(jì)算問題[1]。基于普通計(jì)算工具來解決這些問題,將耗費(fèi)大量人力物力,甚至無法得到準(zhǔn)確結(jié)果。而科學(xué)計(jì)算[2],利用計(jì)算機(jī)仿真、重現(xiàn)、預(yù)測(cè)或探索自然世界萬物運(yùn)動(dòng)規(guī)律和演變特性的全過程,通過研究合理的計(jì)算方法,設(shè)計(jì)高效的并行算法,研制合適的應(yīng)用程序,能準(zhǔn)確、高效地模擬各領(lǐng)域研究過程,分析計(jì)算結(jié)果。然而,普通計(jì)算機(jī)的科學(xué)計(jì)算能力往往是有限的,現(xiàn)有的計(jì)算能力無法高效地解決某些基礎(chǔ)學(xué)科和工程技術(shù)部門的科學(xué)計(jì)算問題,如長(zhǎng)期天氣預(yù)報(bào)、石油勘探、飛機(jī)整體氣動(dòng)力等等。
與此同時(shí),地震檢測(cè)儀、粒子碰撞器、天文望遠(yuǎn)鏡以及高通量分析裝置等大型科學(xué)儀器的研制和發(fā)展[3],產(chǎn)生了大量非結(jié)構(gòu)化或半結(jié)構(gòu)化的數(shù)據(jù),使得“大數(shù)據(jù)”趨勢(shì)變得越來越突出[4]。如今,許多科學(xué)發(fā)現(xiàn)和見解由大量數(shù)據(jù)集驅(qū)動(dòng),“大數(shù)據(jù)”被認(rèn)為是除了實(shí)驗(yàn)、理論和計(jì)算方法之外的第四種科學(xué)范式[5]。數(shù)據(jù)生成的容量、速度和多樣性構(gòu)成了分析大數(shù)據(jù)的主要挑戰(zhàn)。
為提高科學(xué)計(jì)算能力,解決大數(shù)據(jù)問題,高性能計(jì)算(HPC)[6]技術(shù)迅猛發(fā)展。高性能計(jì)算機(jī)代表用于解決計(jì)算密集型科學(xué)和工程問題的高端計(jì)算基礎(chǔ)設(shè)施。我國(guó)的高性能計(jì)算早已突破每秒浮點(diǎn)運(yùn)算千萬億次的壁壘,并繼續(xù)解決性能、可擴(kuò)展性、可編程性、能效和可靠性等問題,探索新的支持技術(shù)以達(dá)到e級(jí)計(jì)算能力。
目前,高性能計(jì)算機(jī)已在多個(gè)領(lǐng)域得到了成功的應(yīng)用[7],但仍存在大量可供多個(gè)研究機(jī)構(gòu)使用的空閑節(jié)點(diǎn)。本文簡(jiǎn)介了一些高性能計(jì)算機(jī)系統(tǒng)及其性能,針對(duì)近年來在高性能計(jì)算機(jī)上的各大領(lǐng)域應(yīng)用實(shí)例進(jìn)行總結(jié),并對(duì)在其他領(lǐng)域的應(yīng)用做出了展望,以促進(jìn)更高效、全面地使用高性能計(jì)算機(jī)。
2高性能計(jì)算機(jī)系統(tǒng)概述
中國(guó)首臺(tái)千萬億次超級(jí)計(jì)算機(jī),是“天河一號(hào)”。“天河一號(hào)”超級(jí)計(jì)算機(jī)使用由中國(guó)自行研發(fā)的“龍”芯片,其峰值計(jì)算速度能夠達(dá)到1.206TFlop/s,同時(shí)Linpack實(shí)測(cè)性能達(dá)到了0.563TFlop/s,該超級(jí)計(jì)算機(jī)位居當(dāng)時(shí)公布的中國(guó)超級(jí)計(jì)算機(jī)前100強(qiáng)之首,中國(guó)成為了繼美國(guó)之后世界上第二個(gè)能夠自主研制千萬億次超級(jí)計(jì)算機(jī)的國(guó)家。
天河一號(hào)采用6144個(gè)英特爾通用多核處理器和5120個(gè)AMD圖形加速處理器,其內(nèi)存總?cè)萘?8TB。至于點(diǎn)對(duì)點(diǎn)通信的帶寬就達(dá)到了40Gbps,而其用于共享的磁盤總?cè)萘縿t達(dá)到1PB。該超級(jí)計(jì)算機(jī)系統(tǒng)部署于天津?yàn)I海新區(qū)的國(guó)家超級(jí)計(jì)算天津中心作為業(yè)務(wù)主機(jī)。
2013年,由國(guó)防科學(xué)技術(shù)大學(xué)研制的“天河二號(hào)”大型超級(jí)計(jì)算機(jī)以每秒33.86千萬億次的浮點(diǎn)運(yùn)算速度成為全球最快的超級(jí)計(jì)算機(jī),位列國(guó)際大型超級(jí)計(jì)算機(jī)TOP500榜首。隨后,“天河二號(hào)”實(shí)現(xiàn)了世界最快超算“六連冠”。天河二號(hào)采用基于加速器的架構(gòu)[8]。在可接受的總成本、功率預(yù)算、支持可靠性、可用性和可服務(wù)性(RAS)的能力、應(yīng)用開發(fā)和移植的復(fù)雜性下提供高的計(jì)算性能。
天河二號(hào)的硬件系統(tǒng)由五個(gè)子系統(tǒng)組成,包括計(jì)算系統(tǒng)、通信系統(tǒng)、存儲(chǔ)系統(tǒng)、監(jiān)控診斷系統(tǒng)和服務(wù)系統(tǒng)。它由16000個(gè)節(jié)點(diǎn)組成,每個(gè)節(jié)點(diǎn)有2顆基于IvyBridge-EXeonE52692處理器和3顆XeonPhi,每個(gè)節(jié)點(diǎn)的內(nèi)存是64GB。所有的計(jì)算節(jié)點(diǎn)都通過專有的高速互連系統(tǒng)連接。還提供了一個(gè)服務(wù)子系統(tǒng)的4096個(gè)節(jié)點(diǎn),以加快高吞吐量的計(jì)算任務(wù),如大數(shù)據(jù)處理。存儲(chǔ)子系統(tǒng)包括256個(gè)I/O節(jié)點(diǎn)和64個(gè)容量為12.4PB的存儲(chǔ)服務(wù)器。天河二號(hào)文件系統(tǒng)命名為h2fs,采用麒麟操作系統(tǒng)、基于SLURM的全局資源管理。支持大多數(shù)現(xiàn)代編程語言,包括C、C++、Java、Python等。采用的是新型異構(gòu)多態(tài)體系結(jié)構(gòu)(Multipurpose-Heterogeneous)[9]。
天河二號(hào)的系統(tǒng)配置列于表1中。
“天河二號(hào)”集科學(xué)計(jì)算、大數(shù)據(jù)分析和云計(jì)算于一體,被認(rèn)為是滿足工業(yè)和社會(huì)需求的戰(zhàn)略基礎(chǔ)設(shè)施。以超級(jí)計(jì)算機(jī)為支撐的高性能計(jì)算應(yīng)用正加速向各個(gè)領(lǐng)域滲透。
Table1SystemindicatorsofTianhe-2
表1天河二號(hào)系統(tǒng)指標(biāo)
width=375,height=252,dpi=110
在國(guó)內(nèi)早期的高性能計(jì)算機(jī)研究中,2004年6月超級(jí)計(jì)算機(jī)曙光4000A研制成功,落戶上海超級(jí)計(jì)算中心,標(biāo)志著繼美國(guó)和日本之后,中國(guó)是第三個(gè)能研制10萬億次高性能計(jì)算機(jī)的國(guó)家。曙光能夠每秒運(yùn)算11萬億次,進(jìn)入全球超級(jí)計(jì)算機(jī)前十名。經(jīng)過十多年發(fā)展,曙光E級(jí)高性能計(jì)算機(jī)系統(tǒng)項(xiàng)目現(xiàn)在是國(guó)家“十三五”期間高性能計(jì)算的重點(diǎn)專項(xiàng),其最顯著的特點(diǎn)是突破了制約E級(jí)計(jì)算發(fā)展的各個(gè)關(guān)鍵技術(shù),通過這樣原型機(jī)的研制去驗(yàn)證E級(jí)的技術(shù)路線,為未來真正實(shí)現(xiàn)國(guó)產(chǎn)E級(jí)系統(tǒng)做技術(shù)鋪墊。
width=642,height=303,dpi=110
Figure1StructureofSugon’sCPU
圖1曙光CPU結(jié)構(gòu)
在2016年法蘭克福世界超算大會(huì)上,“神威·太湖之光”超級(jí)計(jì)算機(jī)系統(tǒng)成為新的榜首,速度較第二名“天河二號(hào)”快出近兩倍,效率提高三倍。
神威·太湖之光超級(jí)計(jì)算機(jī)由40個(gè)運(yùn)算機(jī)柜和8個(gè)網(wǎng)絡(luò)機(jī)柜組成。每個(gè)運(yùn)算機(jī)柜包含4塊由32塊運(yùn)算插件組成的超節(jié)點(diǎn)。每個(gè)插件由4個(gè)運(yùn)算節(jié)點(diǎn)板組成,一個(gè)運(yùn)算節(jié)點(diǎn)板又含2塊“申威26010”高性能處理器。一臺(tái)機(jī)柜就有1024塊處理器,整臺(tái)“神威·太湖之光”共有40960塊處理器。每個(gè)單個(gè)處理器有260個(gè)核心,主板為雙節(jié)點(diǎn)設(shè)計(jì),每個(gè)CPU固化的板載內(nèi)存為32GBDDR3-2133。
在2018年的法蘭克福世界超算大會(huì)上,美國(guó)能源部橡樹嶺國(guó)家實(shí)驗(yàn)室(ORNL)推出的新超級(jí)計(jì)算機(jī)“Summit”以每秒12.23億億次的浮點(diǎn)運(yùn)算速度,接近每秒18.77億億次峰值速度奪冠,“神威·太湖之光”屈居第二。
3高性能計(jì)算機(jī)各大領(lǐng)域應(yīng)用實(shí)例分析
為充分發(fā)揮高性能計(jì)算機(jī)的優(yōu)勢(shì),極大限度地滿足客戶需求,自超級(jí)計(jì)算機(jī)在中國(guó)開始發(fā)展以來,相關(guān)團(tuán)隊(duì)都致力于擴(kuò)展高性能計(jì)算在各個(gè)領(lǐng)域的利用,迎合各領(lǐng)域應(yīng)用的計(jì)算要求,協(xié)助用戶配置應(yīng)用環(huán)境,建立高效模型,設(shè)計(jì)合理并行算法,以實(shí)現(xiàn)各領(lǐng)域的科學(xué)計(jì)算和大數(shù)據(jù)處理在高性能計(jì)算機(jī)上的應(yīng)用。
3.1生物計(jì)算與精準(zhǔn)醫(yī)療
根據(jù)廣州國(guó)家超級(jí)計(jì)算中心的內(nèi)部統(tǒng)計(jì)[10],生物醫(yī)學(xué)相關(guān)應(yīng)用現(xiàn)在是超級(jí)計(jì)算中心的主要客戶。生物醫(yī)學(xué)研究主要包括生物大分子的結(jié)構(gòu)模擬與功能建模,藥物設(shè)計(jì)與篩選,蛋白質(zhì)序列分析,基因序列分析與比對(duì),基因調(diào)控網(wǎng)絡(luò)的分析與建模,醫(yī)療衛(wèi)生的雙數(shù)據(jù)分析及生物醫(yī)學(xué)文獻(xiàn)挖掘等。
生物醫(yī)學(xué)數(shù)據(jù)繁多,且一直呈指數(shù)增長(zhǎng)。如世界最大的生物數(shù)據(jù)保存者之一,歐洲生物信息學(xué)研究所(EBI),存儲(chǔ)超過20PB的數(shù)據(jù),并且最近每年的數(shù)據(jù)量都增加一倍[11]。數(shù)據(jù)源的異質(zhì)性,包括基因組學(xué)、蛋白質(zhì)組學(xué)、代謝組學(xué)、微陣列數(shù)據(jù)、文獻(xiàn)等,使其更加復(fù)雜。
針對(duì)典型類型的大數(shù)據(jù)——基因組大數(shù)據(jù),在大數(shù)據(jù)框架(如Hadoop和Spark)的幫助下,云計(jì)算已經(jīng)在大數(shù)據(jù)處理中發(fā)揮著積極作用。現(xiàn)在,HPC在中國(guó)的快速發(fā)展使得以不同的方式解決基因組大數(shù)據(jù)挑戰(zhàn)成為可能。Yang等人[12]強(qiáng)調(diào)了在現(xiàn)代超級(jí)計(jì)算機(jī)上增強(qiáng)大數(shù)據(jù)支持的必要性,提出只需單個(gè)命令或單個(gè)shell腳本就能使當(dāng)前的大數(shù)據(jù)應(yīng)用在高性能計(jì)算機(jī)上運(yùn)行,并且支持多個(gè)用戶同時(shí)處理多個(gè)任務(wù)的Orion作為高性能計(jì)算機(jī)的大數(shù)據(jù)平臺(tái)。該平臺(tái)可以根據(jù)大數(shù)據(jù)處理需求,合理分配所需的資源量,并使用HPC系統(tǒng)軟件棧自動(dòng)建立和配置可回收的Hadoop/Spark集群。以華大基因提供的基因組學(xué)大數(shù)據(jù)作為案例研究,測(cè)試基因組分析流水線SOAPGaea的FASTQ過濾、讀取對(duì)齊、重復(fù)刪除和質(zhì)量控制四個(gè)過程,證明了Orion平臺(tái)的高效性。
為更好地了解基因的精細(xì)結(jié)構(gòu)、分析基因型與表現(xiàn)型的關(guān)系、繪制基因圖譜,DNA序列分析成為生物醫(yī)學(xué)中的重要課題[12]。
DNA序列的排序是對(duì)DNA序列分析的基礎(chǔ)[13]。通常先使用測(cè)序儀得到生物體基因組的一些片段,再利用計(jì)算機(jī)對(duì)片段進(jìn)行denovo拼接,從而得到DNA序列的排列順序。而隨著測(cè)序儀的發(fā)展,基因組的數(shù)據(jù)量增大,分析復(fù)雜性提高,普通計(jì)算工具分析數(shù)據(jù)會(huì)消耗大量時(shí)間和空間。張峰等人[14]基于高性能計(jì)算機(jī),使用一種新型序列拼接工具SGA(StringGraphAssernbler),對(duì)任務(wù)之間數(shù)據(jù)耦合度小的分批構(gòu)建FM-Index,采用粗粒度的多進(jìn)程并行;對(duì)任務(wù)之間數(shù)據(jù)耦合度較大的FM-Index合并過程,采用多線程的細(xì)粒度并行。這種多進(jìn)程與多線程的混合并行策略,使用并行計(jì)算代替通信開銷,測(cè)試小規(guī)模數(shù)據(jù)時(shí),將索引構(gòu)建時(shí)間的最佳性能提高了3.06倍。葉志強(qiáng)等人[15]在基因組排序時(shí),引入隨機(jī)listranking算法,基于高性能計(jì)算機(jī),使用MPI并行實(shí)現(xiàn)Pregel框架的線性化步驟,利用節(jié)點(diǎn)之間的通信和計(jì)算能力,減少了線性化步驟時(shí)間。
SNP(單核苷酸多態(tài)性)檢測(cè)是DNA序列分析的關(guān)鍵步驟[16]。它將對(duì)齊的read、參考序列和被編排的數(shù)據(jù)庫(kù)(如數(shù)據(jù)庫(kù)SNPP)作為輸入,通過站點(diǎn)檢測(cè)對(duì)齊的read和引用站點(diǎn)的信息,生成SNP站點(diǎn)的列表。SNP檢測(cè)工具SoAPSNP可以用一個(gè)多星期的時(shí)間來分析一個(gè)覆蓋20倍的人類基因組。崔英博等人[17]通過重新設(shè)計(jì)SOAPSNP的關(guān)鍵數(shù)據(jù)結(jié)構(gòu)以降低內(nèi)存操作的開銷,設(shè)計(jì)CPU與XeonPhi協(xié)作的協(xié)調(diào)并行框架,以獲得更高的硬件利用率。并提出了一種基于讀取的窗口劃分策略(RWD),在多個(gè)節(jié)點(diǎn)上提高吞吐量和并行規(guī)模,開發(fā)了SOAPSNP的并行版本MSNP,在沒有任何精度損失的情況下,利用高性能計(jì)算機(jī)的一個(gè)節(jié)點(diǎn)實(shí)現(xiàn)了45倍的加速。
方翔等人[18]利用高性能計(jì)算機(jī),構(gòu)建了由基因組與轉(zhuǎn)錄組測(cè)序數(shù)據(jù)分析、蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)和分子動(dòng)力學(xué)模擬三個(gè)功能模塊組成的生物信息平臺(tái)分析水產(chǎn)病原,對(duì)約氏黃桿菌等多種水生動(dòng)物病原進(jìn)行生物信息學(xué)分析。
從生物醫(yī)學(xué)文獻(xiàn)中提取有價(jià)值的信息的一種主流方法是在非結(jié)構(gòu)化文本上應(yīng)用文本挖掘方法。然而,大量的文獻(xiàn)需要分析,這對(duì)文本挖掘的處理效率提出了巨大的挑戰(zhàn)。彭紹亮等人[19]將針對(duì)疾病實(shí)體識(shí)別的軟件DNorm加入可高效識(shí)別基因、蛋白質(zhì)、藥物、基因通路等實(shí)體關(guān)系的文本挖掘工具PWTEES流水線中,擴(kuò)充了PWTEES的功能。使用LINNAEUS導(dǎo)入MEDLIN數(shù)據(jù)庫(kù)提供的摘要,并在個(gè)人賬戶目錄下,動(dòng)態(tài)使用計(jì)算節(jié)點(diǎn),編譯安裝配置了非關(guān)系型數(shù)據(jù)庫(kù)(MySQL),將大量非結(jié)構(gòu)化數(shù)據(jù)(文獻(xiàn))轉(zhuǎn)為結(jié)構(gòu)化數(shù)據(jù)。將平時(shí)在普通服務(wù)器上需100天能完成的文本挖掘過程縮短為1小時(shí),并利用200個(gè)進(jìn)程并行挖掘7萬篇頭頸癌相關(guān)文獻(xiàn)中的關(guān)鍵命名實(shí)體,得到了80%以上的并行效率。Xing等人[20]開發(fā)了一個(gè)可運(yùn)行的框架PARABTM,它能夠在超級(jí)計(jì)算機(jī)上實(shí)現(xiàn)并行文本挖掘。以GNormPlus、tmVar2.0、Dnorm三種命名實(shí)體識(shí)別任務(wù)為例,對(duì)多個(gè)數(shù)據(jù)集上PARABTM的性能進(jìn)行了評(píng)價(jià)。結(jié)果表明,使用PARABTM并行處理策略中的短板匹配負(fù)載平衡算法(Short-Boardloadbalancingalgorithm),最大程度地提高了生物醫(yī)學(xué)命名實(shí)體識(shí)別的處理速度。
3.2全數(shù)字設(shè)計(jì)與制造
數(shù)字設(shè)計(jì)與制造是一種以計(jì)算機(jī)系統(tǒng)為中心的集成制造方法。隨著制造工廠中計(jì)算機(jī)系統(tǒng)數(shù)量和質(zhì)量的提高,數(shù)字化趨勢(shì)迅速。越來越多的自動(dòng)化工具被用于制造工廠,有必要對(duì)所有機(jī)器、工具和輸入材料進(jìn)行建模、模擬和分析,以優(yōu)化制造過程。而模擬能夠建模和測(cè)試一個(gè)系統(tǒng)行為特性,讓工程師能夠用更低耗、更快速同時(shí)更安全的方式來分析所做的設(shè)計(jì)會(huì)產(chǎn)生什么樣的影響。模擬的應(yīng)用范圍廣泛,涵蓋了產(chǎn)品設(shè)計(jì)、過程設(shè)計(jì)以及企業(yè)資源安排[21]。在模擬過程中,利用超級(jí)計(jì)算機(jī)強(qiáng)大的計(jì)算能力,使工程師能在幾分鐘或幾小時(shí)內(nèi)仿真和測(cè)試數(shù)千種設(shè)計(jì)方案。
利用數(shù)字化的方式,可以對(duì)產(chǎn)品進(jìn)行結(jié)構(gòu)力學(xué)分析、流體力學(xué)分析、電磁設(shè)計(jì)和多物理場(chǎng)模擬等多種計(jì)算仿真。
在計(jì)算流體力學(xué)CFD(CcomputationalFluidDynamics)領(lǐng)域的一大熱點(diǎn)研究問題就是如何在當(dāng)前主流的眾核異構(gòu)高性能計(jì)算機(jī)平臺(tái)上進(jìn)行超大規(guī)模計(jì)算。楊梅芳等人[22]在高性能計(jì)算機(jī)的單個(gè)節(jié)點(diǎn)上,利用超然沖壓發(fā)動(dòng)機(jī)燃燒數(shù)值模擬軟件LESAP模擬一個(gè)實(shí)際發(fā)動(dòng)機(jī)燃燒化學(xué)反應(yīng)和超聲速流動(dòng)的問題,采用OpenMP4.0編程標(biāo)準(zhǔn),向量化SIMD,優(yōu)化數(shù)據(jù)傳輸過程,均衡基于網(wǎng)格塊劃分的負(fù)載技術(shù),實(shí)現(xiàn)了軟件面向CPU+MIC異構(gòu)平臺(tái)的移植,達(dá)到了3.07倍的性能加速比。王勇獻(xiàn)等人[23]面向高性能計(jì)算機(jī)探索了高階精度CFD流場(chǎng)數(shù)值模擬程序的高效并行性。在高性能異構(gòu)并行計(jì)算平臺(tái)上進(jìn)行了多個(gè)算例的數(shù)值模擬的結(jié)果顯示最大CFD規(guī)模達(dá)到1228億個(gè)網(wǎng)格點(diǎn),共使用約59萬CPU+MIC處理器核,實(shí)現(xiàn)了移植后的性能大幅度提高。通過將算法移植到超級(jí)計(jì)算機(jī)進(jìn)行大規(guī)模并行,能夠?qū)崿F(xiàn)高效的流體力學(xué)分析。而文獻(xiàn)[24-26]都是針對(duì)空氣動(dòng)力學(xué)中的具體分類利用高性能計(jì)算機(jī)進(jìn)行模擬以驗(yàn)證有效性的研究。利用數(shù)字化設(shè)計(jì),能夠快速低成本地對(duì)設(shè)計(jì)性能進(jìn)行分析評(píng)估。
在圖像模擬中,Metropolis光傳輸算法能夠利用雙向路徑跟蹤構(gòu)建出由眼睛到光源的路徑,是MonteCarlo方法的變體。然后,使用Metropolis算法靜態(tài)計(jì)算圖像中光線的恰當(dāng)?shù)纳⑸錉顟B(tài),由一條已發(fā)現(xiàn)的光到眼睛的路徑,能搜索到鄰近路徑。簡(jiǎn)單地說,Metropolis光傳輸算法能夠生成一條路徑并存儲(chǔ)其上的節(jié)點(diǎn),同時(shí)能通過添加額外節(jié)點(diǎn)來調(diào)整并生成新的路徑。隨著對(duì)照片級(jí)真實(shí)感圖像的要求越來越高,為Metropolis光傳輸算法開發(fā)高效且高度可擴(kuò)展的光線跟蹤器變得越來越重要。主要是渲染圖像通常需要花費(fèi)大量時(shí)間,開發(fā)高效且高度可擴(kuò)展的光線跟蹤器的困難來自不規(guī)則的存儲(chǔ)器訪問模式、光攜帶路徑的不平衡工作量以及復(fù)雜的數(shù)學(xué)模型和復(fù)雜的物理過程。Wu等人[27]提出了一種基于物理的高度可擴(kuò)展的并行光線追蹤器,并在高性能計(jì)算機(jī)上進(jìn)行了實(shí)現(xiàn),利用多達(dá)26400個(gè)CPU內(nèi)核,證明了其可擴(kuò)展性,能夠從復(fù)雜的3D場(chǎng)景生成逼真圖像。
模擬高場(chǎng)非局部載流子傳輸同樣需要3DMonteCarlo模擬方法,通過適當(dāng)?shù)牧孔有Uw散射效應(yīng),半經(jīng)典的MC模擬能夠給出準(zhǔn)確的結(jié)果。但是,MC方法中3D模擬和量子校正都需要巨大的計(jì)算資源[28],由效率出發(fā)超級(jí)計(jì)算機(jī)的計(jì)算能力就至關(guān)重要了。文獻(xiàn)[29]中,通過在高性能計(jì)算機(jī)上使用IntelMIC協(xié)處理器,進(jìn)一步提高了之前工作中開發(fā)的3D并行的繼承MC模擬器的并行效率。
對(duì)于高性能計(jì)算機(jī)在全數(shù)字設(shè)計(jì)和制造領(lǐng)域的集成應(yīng)用,國(guó)家超級(jí)計(jì)算廣州中心推出了天河星光云超算平臺(tái),以云服務(wù)的方式提供CAE計(jì)算和HPC訪問,大大降低了數(shù)字設(shè)計(jì)的門檻,支持產(chǎn)品設(shè)計(jì)的全工作流。目前基于該平臺(tái)支撐的項(xiàng)目有諸如國(guó)產(chǎn)大飛機(jī)、高鐵等,都是國(guó)家工業(yè)生產(chǎn)中重要項(xiàng)目[30]。
3.3地球科學(xué)與環(huán)境工程
基于該應(yīng)用領(lǐng)域,超級(jí)計(jì)算機(jī)的主要作用在于變革對(duì)自然界中諸如地理狀況、海洋、大氣等種種元素的模擬方式。以超算為平臺(tái),不僅能模擬出地球上每個(gè)時(shí)期的狀況,甚至是對(duì)宇宙中的種種同樣能進(jìn)行模擬分析,讓地球科學(xué)和環(huán)境工程的研究范圍不再限于此時(shí)此地,而是更廣闊的空間。
在宇宙學(xué)的層面,早在2015年就利用高性能計(jì)算機(jī)模擬出宇宙大爆炸后1600萬年之后至今約137億年的暗物質(zhì)和中微子的演化過程,并將進(jìn)一步尋找宇宙邊界的報(bào)告[31]。中微子雖然是自然界中的基本粒子之一,在宇宙大爆炸約1s后與其他等離子體物質(zhì)退耦,形成看不見的宇宙背景,通過物理實(shí)驗(yàn)和實(shí)際的天文觀測(cè)都無法精確測(cè)量中微子的質(zhì)量。在高性能計(jì)算機(jī)平臺(tái)上,利用3萬億粒子來對(duì)宇宙中的中微子和暗物質(zhì)的分布和演化進(jìn)行模擬,開創(chuàng)了宇宙學(xué)中獨(dú)立測(cè)量中微子質(zhì)量的道路。
在地球外圍層面上,大氣變化同樣是一個(gè)關(guān)注點(diǎn)。Xue等人[32]提出了一種基于高性能計(jì)算機(jī)的全球性大氣動(dòng)態(tài)模擬的混合算法。通過使用更靈活的域分區(qū)方案來支持節(jié)點(diǎn)中任意數(shù)量的CPU和加速器,算法能夠充分利用超算的優(yōu)良性能。當(dāng)使用8664個(gè)節(jié)點(diǎn),包括了近170萬個(gè)核心時(shí),可以有效地利用節(jié)點(diǎn)內(nèi)的三個(gè)MIC卡,對(duì)兩個(gè)IvyBridgeCPU(24個(gè)內(nèi)核)實(shí)現(xiàn)4.35倍的加速。基于成功的計(jì)算-通信重疊,算法分別在弱和強(qiáng)縮放測(cè)試中實(shí)現(xiàn)了93.5%和77%的并行效率。
相較于廣袤無邊的宇宙,大部分人們對(duì)于腳下的土地更加關(guān)心。自然災(zāi)害如地震、泥石流等,可能會(huì)造成巨大的生命財(cái)產(chǎn)損失,而地下油氣資源又是經(jīng)濟(jì)社會(huì)發(fā)展所必需的,利用超級(jí)計(jì)算機(jī)去探索大地也是發(fā)展所需要的。
中石油集團(tuán)開發(fā)的用于石油油氣勘探的GeoEast系統(tǒng)已經(jīng)經(jīng)過了十幾年的發(fā)展更新,在數(shù)據(jù)模型、數(shù)據(jù)共享、一體化運(yùn)行模式、三維可視化、交互應(yīng)用框架、地震地質(zhì)建模、網(wǎng)絡(luò)運(yùn)行環(huán)境和并行處理方面取得了多項(xiàng)創(chuàng)新與重大技術(shù)突破,是地震數(shù)據(jù)處理解釋一體化系統(tǒng)。目前GeoEastV3.0版本軟件總體達(dá)到國(guó)際同類軟件先進(jìn)水平,為推動(dòng)中國(guó)石油勘探開發(fā)領(lǐng)域不斷取得新成果發(fā)揮了重要作用[33]。但是,這樣的一體化系統(tǒng)在使用中勢(shì)必會(huì)產(chǎn)生大量的數(shù)據(jù),這就對(duì)計(jì)算機(jī)的性能有了要求。因此,在GeoEast系統(tǒng)聞名世界的過程中,高性能計(jì)算機(jī)在幕后是功臣之一,保證了系統(tǒng)的順利運(yùn)行,助力石油勘探工作[34]。而文獻(xiàn)[35]專注于地震模擬,提出了針對(duì)英特爾至強(qiáng)處理器的對(duì)于軟件SeisSol的優(yōu)化,以適用于高性能計(jì)算機(jī)的計(jì)算環(huán)境中,通過全摩擦滑動(dòng)和地震波的耦合仿真實(shí)現(xiàn)了空前復(fù)雜的地震模型。移植到高性能計(jì)算機(jī)的SeisSol提供近乎最佳的弱縮放,在8192個(gè)節(jié)點(diǎn)上達(dá)到8.6DP-PFLOPS,在所利用的整個(gè)高性能計(jì)算機(jī)上能達(dá)到18~20DP-PFLOPS,成功模擬了1992年蘭德斯地震。
3.4智慧城市云計(jì)算
城市發(fā)展經(jīng)過多年的調(diào)整,已經(jīng)在經(jīng)濟(jì)上有了相當(dāng)進(jìn)展,目前從如何讓人們生活更加便捷出發(fā),許多地區(qū)開始建設(shè)智慧城市。智慧城市(SmartCity)是指利用各種信息技術(shù)或創(chuàng)新意念,集成城市的組成系統(tǒng)服務(wù),以提升資源運(yùn)用的效率,優(yōu)化城市管理和服務(wù),進(jìn)而能夠提高居民生活質(zhì)量。智慧城市的發(fā)展不僅僅是對(duì)生活的改變,還能促進(jìn)生產(chǎn)方式的轉(zhuǎn)變,解決在城市擴(kuò)張及經(jīng)濟(jì)高速發(fā)展中產(chǎn)生的一系列“城市病”問題。智慧城市,代表的是城市的智慧,由智慧,能夠衍生出智能中、知識(shí)和數(shù)字等更廣泛的內(nèi)涵[36]。
迄今為止,廣州、北京、上海、寧波、無錫、深圳、武漢、佛山等國(guó)內(nèi)城市已紛紛啟動(dòng)“智慧城市”戰(zhàn)略,相關(guān)規(guī)劃、項(xiàng)目和活動(dòng)漸次推出。高性能計(jì)算機(jī)云平臺(tái)應(yīng)運(yùn)而生,為智慧城市建立堅(jiān)實(shí)、先進(jìn)的基石。智慧城市由于其性能需求,對(duì)依賴的平臺(tái)的計(jì)算能力的要求會(huì)更高,而超算的計(jì)算能力就能為智慧城市的建設(shè)提供相當(dāng)助力。在2014年,就有中國(guó)首臺(tái)千萬億次超級(jí)計(jì)算機(jī)“天河一號(hào)”在智慧城市中應(yīng)用的報(bào)道,以其在天津?yàn)I海區(qū)的應(yīng)用為例,“天河一號(hào)”的建筑信息領(lǐng)域的大數(shù)據(jù)平臺(tái)通過對(duì)建筑信息建模,實(shí)現(xiàn)對(duì)建筑物從規(guī)劃、設(shè)計(jì)、建造到后期物業(yè)管理理的全程數(shù)字化。此外,城市規(guī)劃、氣象預(yù)測(cè)、生物醫(yī)療、裝備制造、汽車碰撞模擬等行業(yè),也能更多地通過“天河一號(hào)”,實(shí)現(xiàn)大批量數(shù)據(jù)計(jì)算、分析和存儲(chǔ)[37]。
而高性能計(jì)算機(jī)的持續(xù)計(jì)算速度進(jìn)一步達(dá)到了億億次,所能提供的服務(wù)質(zhì)量也更高,麒麟云平臺(tái)被部署在1920個(gè)節(jié)點(diǎn)(15個(gè)機(jī)柜),其中64個(gè)節(jié)點(diǎn)(兩個(gè)機(jī)框)作為云平臺(tái)控制節(jié)點(diǎn),其余節(jié)點(diǎn)為運(yùn)行虛擬機(jī)的計(jì)算節(jié)點(diǎn)和分布式存儲(chǔ)的存儲(chǔ)節(jié)點(diǎn)。為方便管理,將計(jì)算節(jié)點(diǎn)進(jìn)行分區(qū)管理,512個(gè)節(jié)點(diǎn)(4個(gè)機(jī)柜)為一區(qū),用于滿足生產(chǎn)環(huán)境、適配環(huán)境、測(cè)試環(huán)境需要。分布式存儲(chǔ)沒有分區(qū),所有節(jié)點(diǎn)形成一個(gè)全局的分布式存儲(chǔ)池,但在使用時(shí)可按需劃分指定容量的區(qū)域供不同用途使用[38]。這種云超算服務(wù)采用麒麟安全云系統(tǒng)實(shí)現(xiàn)虛擬化技術(shù),將虛擬機(jī)資源遠(yuǎn)程推送給用戶使用[39]。可通過互聯(lián)網(wǎng)遠(yuǎn)程管理虛擬機(jī)資源,使高性能計(jì)算機(jī)云平臺(tái)資源能夠被更多人使用,超算的計(jì)算能力能夠更好地推動(dòng)社會(huì)各個(gè)領(lǐng)域發(fā)展。2017年OpenStack的第15個(gè)版本中,麒麟云團(tuán)隊(duì)在核心功能解決的Bug數(shù),以及Commits的數(shù)量均進(jìn)入全球前20,麒麟云的發(fā)展是非常迅速的,與開源社區(qū)緊密結(jié)合,貢獻(xiàn)突出[40]。
3.5材料科學(xué)與工程
在材料科學(xué)與工程的研究中,量子力學(xué)、經(jīng)典動(dòng)力學(xué)、統(tǒng)計(jì)力學(xué)是三大基礎(chǔ)且主要的研究方向。研究人員致力于材料參數(shù)的建模、多尺度平臺(tái)開發(fā)和新材料的設(shè)計(jì)、開發(fā)和優(yōu)化。
分子動(dòng)力學(xué)模擬在材料科學(xué)、生物化學(xué)和生物物理學(xué)等領(lǐng)域得到了廣泛的應(yīng)用。分子動(dòng)力學(xué)(MD)是研究分子和分子的物理運(yùn)動(dòng)的計(jì)算機(jī)模擬方法,它提供分子尺度上的微觀取樣。基于能量細(xì)化的輔助建模AMBER(AssistedModelBuildingwithEnergyRefinement)[41]是用于MD模擬的使用最廣泛的軟件包之一。然而,對(duì)于具有百萬原子級(jí)的系統(tǒng)的AMBERMD模擬的速度仍然需要改進(jìn)。彭紹亮等人[42]在單CPU上的細(xì)粒度OpenMP并行、單節(jié)點(diǎn)CPU/MIC并行優(yōu)化和多節(jié)點(diǎn)多MIC協(xié)作并行加速方面進(jìn)行了改進(jìn)。在高性能計(jì)算機(jī)上實(shí)現(xiàn)AMBER的并行加速策略,與原程序相比,實(shí)現(xiàn)了25~33倍的最高加速比。同時(shí),對(duì)于計(jì)算資源的限制,分子動(dòng)力學(xué)軟件GROMACS不能大規(guī)模地進(jìn)行滿意的操作。Wang等人[43]提出了一種利用卸載模式加速GROMACS的方法。為了提高GROMACS的效率,提出了異步化、數(shù)據(jù)重組和數(shù)組重用等一系列方法。在這種模式下,GROMACS可以與CPU和IntelXeonPHITM多個(gè)集成內(nèi)核(MIC)協(xié)處理器同時(shí)有效地配置,充分利用高性能計(jì)算機(jī)資源。
材料輻照效應(yīng)(Materialirradiationeffect)是使用核能的重要關(guān)鍵之一。然而,由于高通量輻照設(shè)施和進(jìn)化過程知識(shí)的缺乏,此效應(yīng)的利用并不好。在高性能計(jì)算的幫助下,Hu等人[44]提出了一種新的數(shù)據(jù)結(jié)構(gòu),用于大規(guī)模并行模擬金屬材料在輻照環(huán)境下的演化。基于所提出的數(shù)據(jù)結(jié)構(gòu),開發(fā)了一種新的分子動(dòng)力學(xué)軟件——CrystalMD,并在高性能計(jì)算機(jī)上進(jìn)行了二兆個(gè)原子模擬,對(duì)MD輻射效應(yīng)研究的模擬規(guī)模進(jìn)行了擴(kuò)展。
3.6其他領(lǐng)域
近年來,隨高性能計(jì)算的推廣,政府部門對(duì)超級(jí)計(jì)算機(jī)的重視,舊產(chǎn)業(yè)轉(zhuǎn)向新產(chǎn)業(yè)的變化及大量有高性能計(jì)算需求的企業(yè)對(duì)超級(jí)計(jì)算機(jī)的需求增大,超算人才培養(yǎng)初見成效[45]。在應(yīng)用軟件開發(fā)等推動(dòng)下,高性能計(jì)算機(jī)的適用范圍逐漸向更多領(lǐng)域滲透。
源于人工神經(jīng)網(wǎng)絡(luò)的研究深度學(xué)習(xí)作為人工智能的一個(gè)新研究領(lǐng)域,在模仿人腦的機(jī)制來解釋如圖像、聲音和文本數(shù)據(jù)上有了很大進(jìn)展。例如,卷積神經(jīng)網(wǎng)絡(luò)(CNN)能準(zhǔn)確地對(duì)大型圖像進(jìn)行識(shí)別處理,然而CNN的訓(xùn)練密集程度很高,特別是對(duì)于大型具挑戰(zhàn)性的任務(wù),卷積層的參數(shù)數(shù)據(jù)量龐大。而高性能計(jì)算機(jī)的易訪問、高峰值等性能使學(xué)術(shù)界和工業(yè)界都可以輕松訪問相關(guān)平臺(tái),并可以在合理的時(shí)間內(nèi)訓(xùn)練中等和較大規(guī)模的CNN。使用基于輸入展開以將其投影為矩陣乘法(Unfold+Parallel-GEMM)的算法的CAFFE、Theano、Torch7、Chainer、CNTK和TensorFlow等最先進(jìn)的CNN基礎(chǔ)設(shè)施已可以在高性能計(jì)算機(jī)上進(jìn)行部署和應(yīng)用。
增強(qiáng)現(xiàn)實(shí)技術(shù)AR(AugmentedReality),將真實(shí)世界信息模擬至虛擬世界,讓人隨時(shí)產(chǎn)生真實(shí)感受。通過高性能計(jì)算機(jī)高效地實(shí)現(xiàn)算法,可以數(shù)字虛擬孕育“互聯(lián)網(wǎng)+”新業(yè)態(tài),開發(fā)虛擬試衣、模擬試駕等應(yīng)用項(xiàng)目。