• <input id="zdukh"></input>
  • <b id="zdukh"><bdo id="zdukh"></bdo></b>
      <b id="zdukh"><bdo id="zdukh"></bdo></b>
    1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

      <wbr id="zdukh"><table id="zdukh"></table></wbr>

      1. <input id="zdukh"></input>
        <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
        <sub id="zdukh"></sub>
        公務員期刊網 精選范文 量子力學的應用范文

        量子力學的應用精選(九篇)

        前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的量子力學的應用主題范文,僅供參考,歡迎閱讀并收藏。

        量子力學的應用

        第1篇:量子力學的應用范文

        關鍵詞: 《量子力學》 物理圖像 創新思維 培養

        《量子力學》是物理學專業重要的專業基礎課程,其教學質量的高低不僅影響到其他后續課程的學習,而且直接影響到物理學專業人才培養目標的實現。衡量物理教學的質量標準應該有三個維度,一是知識與技能維度,二是物理思想和方法論維度,三是物理品格維度。過去的教學,我們往往過多地重視第一維度,而忽視第二、第三個維度。在量子力學教學中,我們結合量子力學及其發展歷史所涵含的豐富的物理思想與方法,開展了學生創新思維能力培養的教學實踐研究。

        一、創新型、應用型人才培養目標的要求

        考慮到培養21世紀需要的應用型人才目標的要求,而且結合新建本科院校的課程設置的特點,《量子力學》課程的教學方法和教學體系建設應從以下兩方面著手:一方面,著重量子力學概念、規律和物理思想的展現,使學生在知識層面上夠用并且能用,并注意科學人文精神的闡發,為進行物理素質教育與物理教學研究提供量子力學方面的科學素養,如勇于創新、科學、嚴謹等。另一方面,培養學生建立正確的量子力學概念和物理圖像,掌握基本規律,廣泛了解量子力學在推動技術進步方面的作用,開拓思路,培養學生應用物理規律解決應用技術問題的能力。

        二、《量子力學》教學中創新意識及創新能力的培養

        根據應用型人才培養的目標,我們一直致力于探索一套合適的物理學專業量子力學課程教學的共享數字化教學體系,創建完整的教學資源,力求使學生在學習這門課程的同時受到實踐能力和創新能力的培養。相應措施主要體現在以下三個方面。

        (一)創造實驗情景,以實驗和實踐為基礎深化量子力學的原理。

        由于量子力學主要研究微觀粒子的運動規律,理論太抽象,許多量子現象和日常的生活經驗不符合甚至相違背,因此在教學中教師必須強調量子力學首先是一門試驗性的科學,應從實驗事實去推理分析,不直接與主觀經驗聯系,并時時將新的概念和結論與經典物理學的結果作比較,使學生能正確理解量子力學的基本概念,從而學會處理具體問題的方法,掌握量子力學的精髓。在講述量子力學基本內容的時候,尋找合適的接口與量子力學原理在實際生產中的應用相聯系。通過這兩方面的著重討論,學生能感受到量子力學的抽象原理是實實在在的、來源于實踐又回到實踐中得到檢驗的、正確的理論。

        量子力學實驗從可操作的層面上可大致分為三類,一類是僅存在于人們想象中或目前還不能實現的理想實驗,一類是在高水平的實驗室中可以實現的科學研究實驗,一類是我們讓學生自己動手做的有關教學的基礎性實驗。但無論何種實驗,我們都可以利用多媒體技術在課堂上將其生動形象的展現出來,讓學生不僅深刻認識到實驗在量子力學發展中的重要作用,而且培養用實驗發現問題和驗證假說的能力。例如在講解物質粒子的波粒二象性時,我們用多媒體課件演示單電子衍射實驗。單電子發射時,在熒屏上出現一個亮點,說明電子的粒子性;再發射大量電子,屏幕上出衍射條紋,說明了電子的波動性。這樣,難以講解清楚的知識變得生動活潑,使學生能更快地理解所學的知識,且加深了學生的認知印象,大大提高了學習效率。

        (二)充分利用現代媒體的作用,激發學生的創造興趣。

        以電腦和互聯網為代表的信息技術已演變為繼傳統媒體后的“現代媒體”。現代媒體將為教學過程提供新的教學手段,并為培養創新人才奠定了技術基礎。通過網絡技術,學生可以突破傳統教學的時空限制,不但可以享受本校教學資源,而且可以享受到全國高水平的教學資源,從而實現優質教學資源的共享,也為各學校的師生討論交流提供了一個很好的平臺。

        對于《量子力學》這樣一門抽象的理論課,多媒體技術將圖、文、聲、像等各種教學信息有機的組合在一起,直觀、形象、生動,即使對那些比較抽象,難以理解的理論和日常看不到或拍攝不到的情景,也可以通過三維動畫虛擬實現。多媒體豐富的表現力不僅能打破人類視覺上的樊籬,使得學生從科學與藝術相融的視覺信息中感知抽象、復雜的理論,而且能引發學生無限的遐想,極大地激發了他們的想象力。學生的思維高度活躍從而激發創新火花。

        (三)密切結合當前的科技前沿和高新技術,將量子力學知識應用于實踐。

        量子力學在各學科中已經有很多成功的應用并催生了許多交叉學科及現代高新技術的產生。在教學中,教師應盡可能進行知識的滲透和遷移,及時將當前與量子力學相關的科技前沿和高新技術引入到教學中,一些知識可以作為簡單的介紹,也可以就某個方面詳細分析,闡明其量子力學原理。例如量子力學與非線性科學的關系,量子理論在耗散系統、納米技術、分子生物學中的應用,量子力學與正在研究的量子計算機、量子保密通信的關系,等等。在教學中教師適當地穿插這些知識,既不會花費太多的時間,又能使教學更生動、易于理解,而且可使學生開拓視野,活躍思維,激發興趣。這樣學生不僅可以學到運用基礎理論指導科學研究的方法,而且可以克服原有的“量子力學就是一種純理論的學科”的片面認識。如我們在講解一維無限深勢阱時,將其與半導體量子阱和超晶格這一現代科學的前沿相聯系;在講解隧道效應時,將其與掃描隧道顯微鏡相聯系,進而可以介紹掃描探針操縱單個原子的實驗。我們通過這種方式使學生對這一部分的知識有了直觀的認識,從而不再感到量子力學的學習枯燥無味。

        參考文獻:

        [1]曾謹言.量子力學教學與創新人才培養[J].物理,2000,(7).

        [2]錢伯初.我的教學生涯[C].2003.

        [3]謝希德.創造學習的新思路[N].人民日報,1998-12-25,(10).

        第2篇:量子力學的應用范文

        關鍵詞 量子力學 量子教育學 主觀性

        中圖分類號:O413.1 文獻標識碼:A

        量子力學所涵蓋的一些思想,在哲學的研究中體現比較廣泛,也對教學理論方面起了重要的作用,可以說量子力學對哲學思想的發展有著重要的促進作用。量子力學著重利用圖景等表象來認識周圍的世界,強調因果關系的認識,對后期形成的教育學理論具有參考性。但是,借助量子力學所形成的“量子教育學”則有很大的不同,這一教育學對原來的量子理論認識存在較大的偏差,充分強調自然科學。

        1量子力學的緣起

        1900年,量子假說出現在眾人的認知里,現在的量子力學仍在不斷完善,為后期的科學發展提供了重要的理論基礎,可以說量子力學是量子理論的中心,它促進了原子能等一些先進技術的發展,為社會的重大發明打下基礎,使人們更加清晰地認識到微觀世界,并利用微觀運動來更好地服務社會,是人類的重要發現,也是社會的偉大進步。

        2量子力學的宇宙觀

        在宇宙世界中,對量子理論有較多的探討,從已經存在的氫原子中,找到了量子級別的狀態。對于電子而言,比原子更為復雜,這就要求必須要滿足求解該原子的特定的方程來解出,并且要求其 場剛好環繞原子核產生駐波而求得。此外,量子態與別的駐波不一樣,都有自己特定的頻率,并與所蘊含的能量有關,每種量子狀態都有所表征的能量。這就是說,預期任何一個態的能量都是一個具體量子所確定的,并不是模棱兩可的,只要是有理論依據,就可以科學地估測態的能量多少。由于質子與電子之間存在著相互吸引的力,要想移動一個電子就必須要克服引力做功。

        3量子的思維方式

        人類思想總是處于不斷發展中,當兩種思想發生交集時,就會形成一個比較完整的、令人驚嘆的思想成果,正如牛頓的世界觀與量子理論產生彼此彌合的交集,才會讓思想發展得如此迅速,才會讓社會發展如此的快。量子思維方式給人類一個重要的啟示,要求以人為中心,以人為主體。隨著時代的進步和經濟發展,信息技術逐漸融入了人的智慧和思想,他們彼此都是看不見的,沒有確定的形狀,但彼此交匯起來以后,就成了一種可以量化的物質,這是由于物質性比較弱。其實,量子物理學所產生相關的科學智慧,是人類社會發展的重要因素,也是文明進步的重要保障,可以說,量子物理學是計算機重要的組成部分,所形成的計算機芯片是重要的思維體現,量子物理學不僅是科學進步的前提,更是信息發展的重要保障,量子思維更是現代社會發展的必要方式。

        4“量子教育學”的唯心主義

        從產生量子力學后,“量子教育學”也隨之不斷發展,雖然也涉及到一些教育學方面的觀點,但這些觀點都是被眾人早就接受了。如:學習是一個整體的過程,在這個過程中各知識點是相互聯系、彼此交錯的,以及還談到了關鍵詞:服務、個性化、互補等,但是,這些所謂的觀點及結論不是原汁原味的,也不是從量子力學中演變而來,而是與它的原理相悖,從本質上講,“量子教育學”就是一種唯心主義的表現。

        貝克萊比較重視經驗,認為所學的知識來源于經驗,但是他卻犯了一個致命的錯誤,認為感覺是世界真正存在的東西,其他的都是看不見的。他認為,知識是一切力量之源,但感覺是我們去探索未知世界,追求至高真理的唯一手段,只有能感覺到,才能被發現。也就是說:我們的主觀性決定了我們所看見的世界,這也是量子教育學詮釋的觀點。他認為,只要消除了事物與觀念的差異,認同事物等同于所謂的觀念,并且觀念可以感知任何世界上存在的事物,這樣才會讓我們的知識更加具有生命力。

        5“量子教育學”的曲解

        正所周知,量子力學不可能槲ㄐ鬧饕搴筒豢芍論創造理論基礎,而“量子教育學”卻是唯心主義的重要思想來源,這是“量子教育學”對量子力學核心思維的歪曲,或者說對量子力學沒有正確的認識,造成思想上出現截然不同的主張,另外,“量子教育學”過分強調感覺和經驗,導致偏向于不可知論,與量子力學的思想相悖而馳。

        “量子教育學”對量子力學概念和方法認識的偏差表現有。為了進一步認識光的本質特性,提出了波粒二象性的觀念。此后,玻爾提出了“氣補原理”,再一次詮釋了波粒二象性的本質。“測不準”原理而是在某一個方面有較大的缺陷,不是粒子在宏觀世界的不適用,只是說明不能單一地應用某一個方面,只有同時應用時才能為物理現象提高全面的解釋。玻爾認為,波粒二象性在整個量子力學中的地位較高,它是一種可以很好地描述一種物理現象的原理,也可以說是解釋因果關系的一種原理,它可以相互促進、相互排斥,這種互斥的關系不可或缺,這種互補關系后來被廣大學者所接受。

        6結語

        近年來,量子力學逐漸被廣大研究者重視起來,探討量子力學的基本原理以及與量子教育學的重要關系,在量子理論的發展過程中,這已經留下了較多的論爭。可以肯定的是量子力學對于科學的進步貢獻了一份力量,把微觀世界與宏觀世界聯系起來,而量子教育學并不是量子力學的正確認識,就本身的發展情況來看,量子教育學認同了后現代主義,成為了唯心主義的重要依據。

        參考文獻

        [1] 賀天平.量子力學多世界解釋的哲學審視[J].中國社會科學,2012(01):48-61,207.

        [2] 烏云高娃.量子力學發展綜述[J].信息技術,2006(06):154-157.

        [3] 母小勇.量子力學與“量子教育學”[J].教育理論與實踐,2006(07):1-5.

        第3篇:量子力學的應用范文

        關鍵詞:量子力學;教學改革;物理思想

        作者簡介:王永強(1980-),男,山西河曲人,鄭州輕工業學院技術物理系,講師。(河南?鄭州?450002)

        基金項目:本文系鄭州輕工業學院第九批教學改革項目“《量子力學》課程體系與教學內容的綜合改革和實踐”資助的研究成果。

        中圖分類號:G642.0?????文獻標識碼:A?????文章編號:1007-0079(2012)20-0070-02

        “量子力學”是20世紀物理學對科學研究和人類文明進步的兩大標志性貢獻之一,已經成為物理學專業及部分工科專業最重要的基礎課程之一,是學習“固體物理”、“材料科學”、“材料物理與化學”和“激光原理”等課程的重要基礎。通過這門課程的學習,學生能熟練掌握量子力學的基本概念和基本理論,具備利用量子力學理論分析問題和解決問題的能力。同時,這門課程對培養學生的探索精神和創新意識及科學素養亦具有十分重要的意義。然而,“量子力學”本身是一門非常抽象的課程,眾多學生談“量子”色變,教學效果可想而知。如何激發學生學習本課程的熱情,充分調動學生的積極性和主動性,提高量子力學的教學水平和教學質量,已經成為擺在教師面前的重要課題。近年來,筆者在借鑒前人經驗的基礎上,結合鄭州輕工業學院(以下簡稱“我校”)教學實際,在“量子力學”的教學內容和教學方法方面做了一些有益的改革嘗試,取得了較好的效果。

        一、“量子力學”教學內容的改革

        量子力學理論與學生長期以來接觸到的經典物理體系相去甚遠,尤其是處理問題的思路和手段與經典物理截然不同,但它們之間又不無關聯,許多量子力學中的基本概念和基本理論是類比經典物理中的相關內容得出的。因此,在“量子力學”教學中,一方面需要學生摒棄在經典物理學習中形成的固有觀念和認識,另一方面在學習某些基本概念和基本理論時又要求學生建立起與經典物理之間的聯系以形成較為直觀的物理圖像,這種思維上的沖突導致學生在學習這門課程時困惑不堪。此外,這門課程理論性較強,眾多學生陷于煩瑣的數學推導之中,導致學習興趣缺失。針對以上教學中發現的問題,筆者對“量子力學”課程的教學內容作了一些有益的調整。

        1.理清脈絡,強化知識背景

        從經典物理所面臨的困難出發,到半經典半量子理論的形成,最終到量子理論的建立,對量子力學的發展脈絡進行細致的、實事求是的分析,特別是對量子理論早期的概念發展有一個準確清晰的理解,弄清楚到底哪些概念和原理是已經證明為正確并得到公認的,還存在哪些不完善的地方。這樣一方面可使學生對量子力學中基本概念和基本理論的形成和建立的科學歷史背景有一深刻了解,有助于學生理清經典物理與量子理論之間的界限和區別,加深他們對這些基本概念和基本理論的理解;另一方面,可使學生對蘊藏在這一歷程中的智慧火花和科學思維方法有一全面的了解,有助于培養學生的創新意識及科學素養。比如:對于玻爾理論,由于對量子化假設很難用已經成形的經典理論來解釋,學生往往會覺得不可思議,難以理解。為此,在講解這部分內容時,很有必要介紹一下玻爾理論產生的歷史背景,告訴學生在玻爾的量子化假設之前就已經出現了普朗克的量子論和愛因斯坦的光量子概念,且大量關于原子光譜的實驗數據也已經被掌握,之前盧瑟福提出的簡單行星模型卻與經典物理理論及實驗事實存在嚴重背離。為了解決這些問題,玻爾理論才應運而生。在用量子力學求解氫原子定態波函數時,還可以通過定態波函數的概率分布圖,向學生介紹所謂的玻爾軌道并不是真實存在的,只是電子出現幾率比較大的區域。通過這樣講述,學生可以清晰地體會到玻爾理論的承上啟下的作用,而又不至于將其與量子力學中的概念混為一談。

        2.重在物理思想,壓縮數學推導

        在物理學研究中,數學只是用來表述物理思想并在此基礎上進行邏輯演算的工具,教師不能將深刻的物理思想淹沒在復雜的數學形式之中。因此,在教學過程中,教師要著重于加強基本概念和基本理論的講授,把握這些概念和理論中所蘊含的物理實質。對一些涉及繁難數學推導的內容,在教學中刻意忽略具體數學推導過程,著重于使學生掌握其中的思想方法。例如:在一維線性諧振子問題的教學中,對于數學方面的問題,只要求學生能正確寫出薛定諤方程、記住其結論即可,重點放在該類問題所蘊含的物理意義及對現成結論的應用上。這樣,學生就不會感到枯燥無味,而能始終保持較高的學習熱情。

        二、教學方法改革

        傳統的“填鴨式”教學法把課堂變成了教師的“一言堂”,使得學生在教學活動中始終處于被動接受地位,極大地壓制了學生學習的主觀能動性,十分不利于知識的獲取以及對學生創新能力及科學思維的培養。而且,“量子力學”這門課程本身實驗基礎薄弱、理論性較強,物理圖像不夠直觀,一味采取灌輸式教學,學生勢必感到枯燥,甚至厭煩。長期以往,學習積極性必然受挫,學習效果自然大打折扣。為了提高學生學習興趣,激發其學習的積極性,培養其科學探索精神及創新能力,筆者在教學方法上進行了一些有益的探索。

        1.發揮學生主體作用

        除卻必要的教學內容講解外,每節課都留出一定的師生互動時間。教師通過創設問題情景,引導學生進行研究討論,或者針對已講授內容,使學生對已學內容進行復習、總結、辨析,以加深理解;或者針對未講授內容,激發學生學習新知識的興趣(比如,在講授完一維無限深方勢阱和一維線性諧振子這兩個典型的束縛態問題后就可引導學生思考“非束縛態下微觀粒子又將表現出什么樣的行為”),[1]這樣學生就會積極地預習下節內容;或者選擇一些有代表性的習題,讓學生提出不同的解決辦法,培養學生的創新能力。對于在課堂上不能解決的問題,積極鼓勵學生利用圖書館及網絡資源等尋求解決,培養學生的科學探索精神。此外,還可使學生自由組合,挑選他們感興趣的與課程有關的題目進行討論、調研并完成小組論文,這一方面激發學生的自主學習積極性,另一方面使其接受初步的科研訓練,一舉兩得。

        2.注重構建物理圖像

        在實際教學中著重注意物理圖像的構建,使學生對一些難以理解的概念和理論形成較為直觀的印象,從而形成深刻的記憶和理解。例如:借助電子束衍射實驗,通過三個不同的實驗過程(強電子束、弱電子束及弱電子束長時間曝光),即可為實物粒子的波粒二象性構建出一幅清晰的物理圖像;借助電子束衍射實驗圖像,再以光波類比電子波,即可凝練出波函數的統計解釋;[2]借助電子雙縫衍射實驗圖像,可使學生更易接受和理解態疊加原理;借助解析幾何中的坐標系,可很好地為學生建立起表象的物理圖像。盡管這其中光波和電子波、坐標系和表象這些概念之間有本質上的區別,但借助這些學生已經熟知和深刻理解的概念,可使學生非常容易地接受和理解量子力學中難以言明的概念和理論,同時,也可使學生掌握這種物理圖像的構建能力,對培養學生的創新思維具有非常積極地作用。

        三、教學手段和考核方式改革

        1.課程教學采用多種先進的教學方式

        如安排小組討論課,對難于理解的概念和規律進行討論。先是各小組內討論,再是小組間辯論,最后老師對各小組討論和辯論的觀點進行評述和指正。例如,在講到微觀粒子的波函數時,有的學生認為是全部粒子組成波函數,有的學生認為是經典物理學的波。這些問題的討論激發了學生的求知欲望,從而進一步激發了學生對一些不易理解的概念和量子原理進行深入理解,直至最后充分理解這些內容。另外課程作業布置小論文,邀請國內外專家開展系列量子力學講座等都是不錯的方式。

        2.堅持研究型教學方式[3]

        把課程教學和科研相結合,在教學過程中針對教學內容,吸取科研中的研究成果,通過結合最新的科研動態,向學生講授在相關領域的應用以培養學生學習興趣。在量子力學誕生后,作為現代物理學的兩大支柱之一的現代物理學的每一個分支及相關的邊緣學科都離不開量子力學這個基礎,量子理論與其他學科的交叉越來越多。例如:基本粒子、原子核、原子、分子、凝聚態物理到中子星、黑洞各個層次的研究以量子力學為基礎;量子力學在通信和納米技術中的應用;量子理論在生物學中的應用;量子力學與正在研究的量子計算機的關系等,在教學中適當地穿插這些知識,擴大學生的知識面,消除學生對量子力學的片面認識,提高學生學習興趣和主動性。

        3.利用量子力學課程將人文教育與專業教學相結合

        量子力學從誕生到發展的物理學史所包含的創新思維是迄今為止哪一門學科都難以比擬的。在19世紀末至20世紀初,經典物理學晴空萬里,然而黑體輻射、光電效應、原子光譜等物理現象的實驗結果嚴重沖擊經典物理學理論,讓經典物理學陷入危機四伏的境地。1900年,德國物理學家普朗克創造性地引入了能量子的概念,成功地解釋了黑體輻射現象,量子概念誕生。1905年,愛因斯坦進一步完善了量子化觀念,指出能量不僅在吸收和輻射時是不連續的(普朗克假設),而且在物質相互作用中也是不連續的。1913年,玻爾將量子化概念引入到原子中,成功解釋了有近30年歷史的巴爾末經驗光譜公式。泡利突破玻爾半經典、半量子論的局限,給予了令玻爾理論不安的反常塞曼效應以合理解釋。1924年,德布羅意突破普朗克能量子觀念提出微觀粒子具有波粒二象性,開始與經典理論分庭抗禮。[4]和學生一起重溫量子力學史的發展之路,在教學過程中展現量子力學數學形式之美,使學生在科學海洋中得到美的享受,從精神上熏陶他們的創新精神。

        4.考試方式改革

        在本課程的教學中采用了教考分離,通過小考題的形式復習章節內容,根據學生的實際水平適當輔導答疑,注重學生對量子力學基礎知識理解的考核。對于評價系統的建立,其中平時成績(包括作業、討論、綜合表現等)占30%,期末考試占70%。從實施的效果來看,督促了學生的學習,收到了較好的效果,受到學生的歡迎。

        四、結論

        通過近年來的改革嘗試,我校的“量子力學”教學水平穩步提高,加速了專業建設。2009年,我校“量子力學”被評為校級精品課程,教學改革成果初現。然而,關于這門課程的教學仍存在不少問題,如教學手段單一、與生產實踐結合不夠緊密等等,這些都需要教師在今后教學中進一步改進。

        參考文獻:

        [1]周世勛.量子力學教程(第二版)[M].北京:高等教育出版社,2009.

        [2]呂增建.從量子力學的建立看類比思維的創新作用[J].力學與實踐,

        2009,(4).

        第4篇:量子力學的應用范文

        關鍵詞 量子力學 教學內容 教學方法

        中圖分類號:G420 文獻標識碼:A

        Teaching Methods and Practice of Quantum Mechanics of

        Materials Physics Professional

        FU Ping

        (College of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073)

        Abstract For the difficulties faced by students in Materials professional to learn quantum mechanics physics course, by a summary of teaching practice in recent years, from the teaching content, teaching methods and means of exploration and practice, students mobilize the enthusiasm and initiative, and achieved good teaching results.

        Key words quantum mechanics; teaching content; teaching methods

        0 引言

        量子力學是研究微觀粒子(如原子、分子、原子核和基本粒子等)運動規律的物理學分支學科,它和相對論是矗立在20世紀之初的兩座科學豐碑,一起構成了現代物理學的兩塊理論基石。相對論和量子力學徹底改變了經典物理學的世界觀,并且深化了人類對自然界的認識,改造了人類的宇宙觀和思想方法,它使人們對物質存在的方式及其運動形態等的認識產生了一個質的飛躍。

        量子力學是材料物理專業一門承前啟后的專業基礎必修課:量子力學的教學必須以數學為基礎,包括線性代數、概率論、高等數學、數理方法等,其又是后續課程材料科學基礎、固體物理、材料物理、納米材料等的理論基礎。可見,量子力學課程在材料物理專業的課程體系中占有非常重要的地位,學生掌握的程度直接影響后續專業課程的學習。作者近年來一直從事量子力學的教學工作,針對量子力學課程教學過程中存在的現象和問題,進行了較深入細致的思考與探討,在實際教學過程中對本課程的教學方法進行了探索與實踐,收到了較好的教學效果。

        1 量子力學教學面臨的難點

        量子力學研究的是微觀粒子的運動規律,微觀粒子同宏觀粒子不同,看不見,摸不著,只有借助于探測器才能察覺它的存在和屬性。材料物理專業學生之前學習的基本上是經典物理,而量子力學理論無法用經典理論進行解釋,學生對此感到難于理解。因此,經典物理的傳統觀念對學生思想的束縛,構成了學生學習量子力學的思想障礙;量子力學可以說無處不“數學”, 由于材料物理專業學生在數學基礎方面與物理專業學生相比較為薄弱,在學習過程中普遍感到數學計算繁難,對大段的數學推導表現出畏難情緒。可見,量子力學對數學的精彩詮釋卻構成了學生學習量子力學的心理障礙。這兩大障礙勢必會影響量子力學和后續課程的學習。在這種情況下,我們應當怎樣開展量子力學教學從而使學生重視并努力學好該課程就成了一個嚴峻的挑戰。

        2 明確教學重點和難點、有的放矢

        要講授一門課程,首先應該對課程內容有一個清晰的認識。量子力學的內容可以包括三個方面:一是介紹產生新概念的歷史背景及一些重要實驗;二是提出一系列不同于經典物理學的基本概念與原理,如波函數、算符等概念和相關原理,是該課程的核心;三是給出解決具體實際問題的方法。三部分內容相互聯系,層層推進,形成完整的知識體系。作為引導者,教師應在這三部分內容的教學過程中幫助學生成功地突破兩大束縛。第一部分內容教師應考慮如何引導學生入門,從習慣古典概念轉而接受量子概念。在講授這部分內容時要將重點放在“經典”向“量子”的過渡上,引出量子力學與經典力學在研究方法上的顯著不同:經典力學是將其研究對象作為連續的不間斷的整體對待,而量子力學將其研究對象看成的間斷的、不連續的。學生在學習這部分時應仔細“品嘗”其中的“滋味”,以便啟發自己的思維自然地產生一個飛躍,完成思想的突破。第二、三部分是量子力學學習的重點與難點,并且涉及大量的數學推導,教師應采取適當的教學手段,突出重點,強調難點。在物理學研究中,數學只是用來表達物理思想并在此基礎上進行邏輯演算的工具,不能將物理內容淹沒在復雜的數學形式當中。通過數學推導才能得到的結論,只需告訴學生,從數學上可以得到這樣的結果就可以了,無需將重點放在繁難的數學推導上,否則會使學生本末倒置,忽略了對量子力學思想的理解。這樣的教學可以幫助學生突破心理障礙,不會一提量子力學就想到復雜的數學推導,從而產生抵觸情緒。成功地突破這兩大障礙,是學習量子力學的關鍵。

        3 教學方法的改革

        3.1 利用現代技術改進教學手段

        傳統的板書教學能夠形成系統性的知識框架,教師在板書推導的過程中,學生有時間反應和思考,緊跟教師的思路,從而可以詳細、循序漸進地吸收所學知識,并培養了良好的思維習慣。但全程板書會導致上課節奏慢,授課內容有限。目前隨著高校教學改革的推進,授課學時相繼減少,對于傳統教學方式來講,要完成教學任務比較困難。這就要借助現代科技手段進行教學改革,包括多媒體課件的使用和網絡教學。但是在量子力學教學中,一些繁雜公式的推導,如果使用多媒體課件,節奏會較快,導致學生目不暇接,來不及做筆記,更來不及思考,不利于講授內容的消化吸收。鑒于此,對于量子力學課程,教學過程應采用板書和多媒體技術相結合的方式,充分發揮二者的優勢,調動學生的學習積極性。

        3.2 建設習題庫

        量子力學課程理論抽象,要深入理解這些理論,在熟練掌握教材基本知識的基礎上,需要通過大量習題的演練,循序漸近,才能檢驗自己理解的程度,真正學好這門課程。因此在教學過程中,強調做習題的重要性。有針對性地根據材料物理專業量子力學的教學大綱和教學內容,參考多本量子力學教材和習題集,利用計算機技術建設量子力學習題庫,題型包括選擇、填空、證明、簡答和計算題等,內容涵蓋各知識點,從簡到繁、由淺至深。題庫操作方便,學生可自行操作,并對所做結果進行實時檢查,從而清楚自己掌握本課程的程度。這一方式在近幾年的教學中取得了良好的教學效果。

        3.3 加強與學生互動,調動學生的學習積極性

        教學是一個師生互動的過程,應讓學生始終處于主動學習的位置而不是被動的接受。量子力學課程的學習更應積極調動學生的積極性,因此教師應在教學過程中加強與學生的互動。增設課前提問、課后討論環節,認真批改作業,積極發現學生學習過程中存在的問題,并及時對問題進行深入講解,解決問題。另外,由于量子力學是建立在一系列基本假定基礎之上的,抽象難懂,鑒于學生難接受的情況,在授課時注意理論聯系實際,盡可能進行知識的滲透和遷移,將量子力學在實際中的應用穿插于教學之中,豐富教學內容,開拓學生視野,從而調動學生的學習興趣和積極性。

        4 結語

        通過近年來教學經驗的總結和探索,形成了一套適合材料物理專業量子力學課程教學的方法,該方法教學效果良好。在近幾年的研究生入學考試中,學生量子力學課程的成績優秀,說明采用這樣的教學方法是成功的。

        資助項目:武漢工程大學2010年校級教學研究項目(X201037)

        第5篇:量子力學的應用范文

        關鍵詞:物理本體;物理實體;量子現象;主觀;客觀

        基金項目:國家社會科學基金項目“量子概率的哲學研究”(16BZX022)

        中圖分類號:N03 文獻標識碼:A 文章編號:1003-854X(2017)06-0054-06

        一、引言

        時間和空間是人類所有經驗的背景。除去存在的事物,時間、空間什么也不是,不存在只有一件事物的時間、空間,時空是事物之間相互關系的一個方面。

        人類通過感性經驗認知的時空,稱作經驗時空;以科學原理和科學方法指導認知的時空是科學時空;牛頓時空、狹義相對論時空、廣義相對論時空、量子力學時空,是經驗時空的科學提升和科學發展,稱作物理時空①。物理時空是科學時空。描述現象實體的時空是現象時空,經驗時空、物理時空、科學時空均是現象時空。而未經觀察的“自在實體(物理本體)”所在時空,稱為“本體時空”。“本體時空”是復數的②,因此,人類實質生活在復數時空中 。作為自然人,觀察者存在于“本體時空”,實時空是人類對時空認識的簡化③。

        主體、客體、觀察信號是人類認知自然的三大基本要素④。一般“現象對觀察者的主觀依賴性”有其客觀原因,體現觀察信號的自然屬性對觀察者在認知中的影響。當把現象對觀察者的主觀依賴性轉化為時空的屬性后,就可以達到客觀描述物質世界⑤。所謂客觀描述就是理論計算與經驗及科學實驗結果相符。

        考慮觀察信號的客觀作用并納入時空理論的科學建構之中,客觀描述物理現象,是物理學家的重要工作。一般,哲學認知中沒有明晰“觀察信號中介作用”的客觀地位,不管“機械反映論”,還是“能動反映論”,都自動將其融入“反映論”理論體系,尤其是前者,往往容易導致主觀唯心主義的滋生。

        狹義相對論用光對時,考慮了光對建立時空的貢獻;牛頓時空是對時信號速度c趨于無窮大的極限情態;考慮引力場對建立時空的影響,引力時空是彎曲的,狹義相對論的平直時空是它的局域特例。從牛頓力學到狹義相對論再到廣義相對論,時空發生了變化,但主體與描述對象的關系沒有變,主體對客體的描述是客觀的。那么是否主體對認知對象完全沒有主觀影響?如果有,它如何產生,又如何消解,實現客觀描述物質世界?經典力學中,人類的處理方法是通過揭示“現象對觀察者的主觀依賴性”及其產生機理,在不同認知領域區分描述中可以忽略的和不可忽略的,能忽略的舍棄,不能忽略的轉化成時空的屬性,實現客觀描述;而從牛頓力學(或相對論力學)到量子力學,時空沒有變化,描述對象具有波粒二象性,“量子現象的主觀依賴性”更為突出。如何消解“量子現象對觀察者的主觀依賴性”,實現量子現象的客觀描述,一直是量子力學基礎討論的熱點。量子力學必須有自己的客觀描述量子現象的時空⑥。

        量子力學時空是閔氏時空的復數拓展和推廣⑦,由此可以實現客觀描述量子世界。它與相對論時空有交集,也有異域。有因必有果,反之亦然,時間與因果關系等價⑧。量子力學中的非定域性,與能量、動量量子化及量子態的突變性相關聯。突變無須時間,導致因果鏈斷裂,與因果關聯的相互作用也被刪除,由此引進了類空間隔。平行并存量子態的出現,是不遵從因果律的量子力學新表現;當能量、動量和相互作用變得連續,宏觀時序得到恢復時,回到相對論時空,量子測量中“量子態和時空的坍縮”⑨ 是不同物理時空的轉換,希爾伯特空間只是它們的共同數學應用空間⑩。

        時空不是絕對的,相對時空有更廣闊的含義,人類需要擴大對時空概念的認知,不同的認知層次有不同的時空對應,復數時空更為本質。人們不應該將所有領域的物理實體歸于某一時空描述,或者用一種時空的性質去否定另一種時空的存在。還是愛因斯坦說得好:是理論告訴我們能夠觀察到什么。當然,新的實驗事實又將告訴人們,理論及其對應的時空應該如何修改和發展。理論不同時空不同,時空具有建構特征。

        二、時空的哲學認知與物理學描述

        時空是哲學的基本概念,也是物理學的基本概念。哲學認為,時間和空間是物質的存在形式,既不存在沒有時空的物質,也不存在沒有物質的時空。笛卡爾指出,空間是事物的廣延性,時間是事物的持續性;康德認為,時空是感性材料的先天直觀形式;牛頓提出時間和空間是彼此分離,絕對不變的,強調數學的時間自我均勻流逝;萊布尼茨說,空間是現象的共存序列,時間與運動相聯系;黑格爾認為,事物運動的本質是空間和時間的直接統一。休謨認為,時、空上的接近和先后關系與因果性直接相關。中國的“宇”和“宙”就是空間和時間概念,它是把三維空間和一維時間概念同宇宙密切聯系在一起的最早應用{11}。

        哲學具有啟示作用,但時空概念如果不與人的社會實踐、科學實驗、科學理論及其數學物理方法相聯系,就只能停留在形而上,無法上升為科學理論概念。

        物理學中,空間從測量和描述物體及其運動的位置、形狀、方向中抽象出來;時間則從描述物體運動的持續性、周期性,以及事件發生的順序、因果性中抽象出來;空間和時間的性質,主要從物體運動及其相互作用的各種關系和度量中表現出來。描述物體的運動,先選定參照物,并在參照物上建立一個坐標系,一般參照物被抽象成點,它就是坐標系的原點;假定被描述物體的形體結構對討論的問題(或對參照物的時空)沒有影響,將物體抽象成質點,討論質點在坐標系中的運動及其相關規律,這就是物理學。由此,“時空是物質的存在形式”的哲學認知也就轉化為人類可操作的具體物理理論描述。

        可見,時空的認知與人類的社會實踐、科學實驗、科學進步直接相關,離不開物理和數學方法的應用。笛卡爾平直空間、閔可夫斯基空間、黎曼空間都已作為物理學所依托的幾何學,在牛頓力學、狹義相對論、廣義相對論中得到了充分應用。由此,幾何學被賦予了物理意義。從牛頓力學到狹義相對論再到廣義相對論,時空發生了變化,但描述對象與觀察者之間的關系沒有變,描述是客觀的,并且描述對象都可抽象成經典的粒子,采用質點模型。量子力學不同,從牛頓力學(相對論力學)到量子力學,描述量子現象的時空沒有變化{12},物理模型沒有變,但量子現象對觀察者有明顯的主觀依賴性,難以客觀描述微觀量子現象。深入分析,解決的辦法有兩種,一是更換物理模型的同時也改變物理時空,消除“量子現象對觀察者的主觀依賴性”,實現客觀描述微觀量子客體;二是改變時空的同時,保留“量子現象對觀察者的主觀依賴性”,將本體、認識、時空融為一體,主觀納入客觀,模糊主客關系。雙4維時空量子力學基礎采用了第一種方法。通過場物質球模型,把點模型隱藏的空間自由度釋放出來;在改變物理模型的同時,也改變了描述時空;將不是點的微觀客體自身的空間分布特性,轉化為描述空間的屬性,客觀描述量子客體。我們認為,第二種方法將主觀認識不加區分地“融入時空”,有損客觀性、科W性,量子力學時空必須是描述客觀世界的時空。物理時空需要建構。

        三、牛頓絕對時空中“現象對觀察者的主觀依賴性”及其“消解”

        眾所周知,物理學對物體運動狀態的描述,理應包含參照物和被描述物體自身的時空特征,而參照物和物體自身的時空特征,必須通過觀察發現。觀察需要觀測信號,物體運動狀態及其時空特征必然帶有觀測信號的烙印{13}。

        “物理本體”不可直接觀察,我們觀察到的是“物理實體”{14}。參照物與研究對象都有自己對應的物理時空,牛頓力學時空應該是兩者的綜合,而不應該只是參照物的時空。但是,牛頓力學中光速無窮大,在討論物體運動時,又假設研究對象的時空結構對討論的問題沒有影響,忽略不計,于是,研究對象抽象成了質點,整個理論體系就只有與參照物聯系的時空了。

        任何具體物體都不會是質點。當用信號去觀察它時,物體自身的時空特征與物體的運動狀態與觀察信號的性質、強弱和傳播速度相關。質點模型忽略物體自身的幾何形象及其變化,忽略運動及觀察信號對物體自身時空特征的影響,參照物也不例外。在從參照物到坐標系的抽象中,抽掉運動及觀察信號對參照物時空特性的影響,就是抽掉物體運動及觀察信號對坐標系時空特性的影響,就是抽掉人的參與對時空認知的影響{15}。牛頓力學時空與物體運動及觀察者無關,絕對不變,基于絕對不動的以太之上。所以,牛頓可以把時間和空間從物質運動中分離出來,時間和空間也彼此分割,空間絕對不變,數學的、永遠流逝的時間絕對不變{16}。哲學的時空演變成了可操作的物理時空。這是宏觀低速運動對時空的簡化與抽象,理論與宏觀經驗及計算相符。

        相互作用實在論認為,現實世界是人參與的世界,對一個研究對象的觀察,離不開主體、客體、觀察信號三個基本要素。參照物和觀察對象的運動和變化及其時空屬性,與觀察信號的性質相關。牛頓力學中,不是沒有現象對觀察主體的依賴性,而是在理論的建立中認為影響很小,可以忽略不計。牛頓力學是“物理本體=物理實體”的力學{17}。這與宏觀經驗和科學實驗相符,在宏觀低速運動層次實現了主客二分,理論被看作是對客觀實在的描述。牛頓力學中,物質告訴時空如何搭建描述背景,時空告訴物質如何在背景中運動。二者構成背景相關。

        牛頓時空是均勻平直時空,相對勻速運動坐標系間的變換是伽利略變換。物理定律在伽利略換下具有協變性,相對性原理成立。

        四、狹義相對論中“現象對觀察者的主觀依賴性”及其“消解”

        狹義相對論建立之前,洛倫茲就認為高速運動中物體長度在運動方向發生收縮{18}。這是他站在牛頓時空立場,承認以太及絕對坐標系的存在對洛倫茲變換所作的解釋。描述時空沒有變,“現象對觀察者出現了主觀依賴性”。自然現象失去了客觀性,這是一次認識危機,屬19世紀末20世紀初兩朵烏云之一。

        狹義相對論不同,它考慮宏觀高速運動中觀察信號對物體時空特征的影響。愛因斯坦在“火車對時”實驗中,他用“光”作為觀察、記錄、認知物體時空特征的信號{19};通過參照物到坐標系的抽象,論證靜、動坐標系K與K′“同時性”不同,靜、動坐標系運動方向時空測量單位發生了變化;將洛倫茲所稱“運動物體自身運動方向上的長度收縮”演變成坐標系時空框架的屬性,還原質點模型,建立相對論力學。實現了觀察者對觀察對象的客觀描述。

        狹義相對論中質點的動量、能量、位置和時間都有確定值,質點的運動具有確定的軌跡,這一點與牛頓力學相同。

        狹義相對論時空的另一重要物理意義是揭示了“物理本體”的客觀實在性。

        牛頓力學缺少相對論不可直接觀察的靜能(m0c2,m0c)對應物,物理本體=物理實體,哲學上的抽象時空直接過渡到牛頓物理時空。

        狹義相對論不一樣,每一個物體都有一個不可直接觀察的靜能(m0c2,m0c)對應物,它在任何靜止參考系中都是不變量,是物理實體背后的物理本體,物理本體不變,變的是mc2、mc對應的物理實體。“物理本體”既不是形而上的(物自體),也不是形而下的(物體),是形而中的(靜能對應物)。它可以認知、可以理論建構,但又不可直接觀察。相對于牛頓,愛因斯坦相對論揭示了“物理本體”的真實存在性。“客觀物質世界”不是思維的產物。

        狹義相對論中,物質告訴時空在運動方向如何修正測量單位,時空告訴物質如何長度收縮、時間減緩。時空具有相對性。

        狹義相對論時空雖然也是均勻平直時空,但由于有上述“相對時空”的出現,時空度規與歐氏時空度規有明顯區別,所以稱為贗歐氏時空。

        但狹義相對論仍然是只考慮光及光速的有限性對建立時空的影響,沒有考慮引力作用對建立時空的影響。如果考慮引力對時空的影響又如何呢?

        五、廣義相對論中“現象對觀察者的主觀依賴性”及其“消解”

        廣義相對論中有水星近日點進動問題和光走曲線的討論。站在牛頓平直時空的立場,觀察結果與理論計算不符。這不是儀器的精度不夠,也不是操作失誤,而是理論本身的問題。因為,牛頓力學也好,狹義相對論也好,討論引力問題,引力場對參照物和研究對象時空屬性的影響都沒有計入其中,而留在觀察者對“現象”的觀察、判斷之中,出現宇觀大尺度“現象對觀察者的主觀依賴性”。如果考慮引力場使時空發生彎曲,利用彎曲時空計算水星近日點進動和光走曲線現象,“現象對觀察者的主觀依賴性”就變成時空的屬性。“現象對觀察者的主觀依賴性”就得到了“消解”,觀察現象與理論結果就取得了一致。這里,物質使時空彎曲,時空告訴物質如何在彎曲時空中運動。廣義相對論實現了觀察者對觀察對象的客觀描述。

        廣義相對論時空是彎曲的,時空度規是變化的。

        六、量子力學中“現象對觀察者的主觀依賴性”及其“消解”

        微觀客體具有波粒二象性,同一個電子,通過雙縫表現為波,而打在屏幕上又表現為粒子,電子集波和粒子于一身,“量子現象對觀察者的主觀依賴性”更為突出。經典力學中波動性和粒子性不能集物體于一身,量子力學與經典力學表現出深刻的矛盾。矛盾的產生,可能是描述微觀現象的時空出了問題。量子力學的研究領域是微觀世界,研究對象是微觀客體,不是經典的粒子,用以觀察的信號也不是連續的光,而是量子化了的光,通過光信號建立的時空應該與牛頓、相對論時空有所區別。而量子力學使用的還是牛頓時空、狹義相對論時空,時空沒有變,物理模型沒有變,而研究領域、觀察信號和研究“對象”變了。量子力學必須有自己對應的時空,將“量子現象對觀察者的主觀依賴性”,轉化為描述時空的屬性,實現客觀描述量子現象! 雙4維時空量子力學就是為實現這一目標應運而生的。

        現有量子力學“量子現象對觀察者的主觀依賴性”之所以難以消解,與量子力學中的點模型相關。許多量子現象與點模型隱藏的空間自由度有直接聯系,但點模型忽略了這些自由度對產生微觀量子現象的作用和影響。我們必須將隱藏的空g自由度還原于時空,才可能正確地認識、客觀描述量子現象。

        可以公認,微觀客體不是點{20},是一個有形客體,有一定的空間分布,不存在確定于某點的空間位置,這是客觀事實。理論上,牛頓時空幾何點位置是確定的,量子力學使用的是質點模型,0 維,位置也是確定的,牛頓時空可以精確描述質點的運動。那么微觀客體空間分布的不確定性如何處理?人們只好轉而認為點粒子在其“空間分布”區域位置具有概率屬性。微觀客體自身空間分布的客觀實在性在量子世界轉化成了一種主觀認知,賦予了微觀客體“內稟”的概率屬性,其運動產生概率分布,或稱其為概率波。

        這是一個認識上的困惑,似乎量子力學描述失去了客觀實在性。這也是量子力學當今的困境。解決困難的方法是:(一)更換點模型,釋放點模型隱藏的自由度,展示“這些自由度對產生微觀現象的貢獻”;(二)建立適合量子力學自身的時空,將釋放的自由度植入其中,讓“量子現象對觀察者的主觀依賴性”變成量子力學時空自身的屬性。

        雙4維時空量子力學的辦法是:(一)用“轉動場物質球”模型取代“質點”模型,釋放點模型隱藏的空間自由度;(二)將4維實時空M4(x)拓展到雙4維復時空W(x,k),且將“釋放的空間自由度――曲率k”作為雙4維復時空的虛部坐標;(三)4維曲率坐標將量子力學賦予微觀客體自身的概率屬性變成量子力學復時空的幾何屬性,場物質球自身的旋轉與運動產生物質波――物理波。

        “場物質球”與“物質波”(類似對偶性假設)既是同一物理實在的兩種不同描述方式,更是微觀客體粒子性和波動性的統一,曲率的大小表示粒子性,曲率的變化表示波動性。場物質球的物質密度是曲率k的函數,因此,物質波既是場物質球的結構波又是場物質密度波。物質波不是傳播能量,而是傳播場物質球的結構或物質密度變化,可映射成實時空M4(x)的概率分布{21},與實驗結果相一致。

        這樣,點模型中“量子現象對觀察者的主觀依賴性”通過“釋放的自由度”轉變為時空W(x,k)的屬性,物質波傳播其中,量子現象是物質波所為。

        研究表明,是量子測量引入的連續作用,使雙4維時空W(x,k)全域轉換到實時空M4(x),波動形態轉變成粒子形態(“相變”),球模型轉換成點模型,概率屬性內在其中,物質波自動映射成概率波,數學處理類似表象變換{22}。

        簡言之,傳統量子力學,微觀客體簡化成質點,描述時空不變,人的主觀意識介入其中,將其空間分布特性――位置不確定性,變成點粒子的概率屬性,實現描述對象從客觀到主觀認知的轉變,具有位置不確定性的點粒子,其運動產生概率波;雙4維時空量子力學,微觀客體簡化成場物質球,“空間分布具體化為幾何曲率”,空間分布特性變成曲率坐標,仍然是從客觀到客觀,描述時空變成了復時空,曲率坐標在其虛部,場物質球的運動產生物質波――物理波。通過量子測量,物質波映射成概率波,球模型演變成點模型,顯示概率屬性,時空內在自動轉換,量子現象對觀察者的主觀依賴性消解在建構的時空理論中。具體論證方法是:

        將靜態場物質球寫成自旋波動形式:Ψ0=е■,描述在復空間。ω0是常數,它的變化只與自身坐標系時間t0相關,全空間分布(物理本體所在空間)。設建在“靜態”場物質球上的坐標系為K0,觀察微觀客體從靜止開始作蛩僭碩,由洛倫茲變換:

        微觀客體的運動速度不同,平面波相位不同。復相空間kμxμ即為物質波所在時空。物質波是物理波。

        自由微觀客體的速度就是建在其上慣性坐標系的速度,慣性系間的坐標變換,隱藏速度突變――“超光速”概念,因為,連續變化會引進引力場破壞線性空間。不同慣性系中平面波之間,相位不同,類似量子力學中的不同本征態。這是相對論中的情形{24}。

        但是,量子力學建立其理論體系時,把上述不同慣性系中的平面波(不同本征態,每一本征態則對應一慣性系),通過本征態突變躍遷假設(量子分割),切斷因果聯系,形成同一時空中“同時”并存的本征態的疊加。態的躍遷不需要時間,“超光速”(非定域),將類空間隔引入量子力學時空,破壞了原有的因果關系。疊加量子態的存在,是“違背”因果律在量子力學中的新表現。

        量子力學時空顯然不是牛頓、狹義相對論時空,但量子力學卻誤認為量子躍遷引起的時空性質的變化是牛頓、狹義相對論時空中的特征,這當然會帶來不可調和的認知矛盾。

        同一微觀客體,不同本征態“同時”并存的物理狀態,從整體看,是洛倫茲協變性在量子力學中的新表現。突變區“超光速”,是類空空間,“不遵從”因果律;釋放光子的運動在類光空間;而本征態自身在類時空間,微觀客體運動速度不能超過光速,需保持因果律,物質波討論的就是這一部分,就像相對論討論類時空間物理一樣。量子糾纏態將涉及到上述三種不同性質物理空間量子態的轉換,有完全合理的物理機制,不需要思維的特殊作用。不過,相對論長度收縮效應,將以物質波波長在運動方向上的收縮來體現。有了雙4維時空量子力學,量子力學與相對論就是相容的,光錐圖分析一樣適用。

        相對論與量子力學的不同,關鍵在于認知層次發生了變化,光由連續場演變成了量子場。而我們用來觀察世界的光信號直接與時空相關,光的物理性質的變化,必然帶來物理空間性質的變化,帶來物理模型的變化,帶來量子力學時空W(x,k)與相對論時空M4(x)之間的區別,帶來對物質波――物理波的全新認知。我們預言,物質波有通訊應用價值{25},但與量子力學非定域性無關。

        《雙4維復時空量子力學基礎――量子概率的時空起源》的理論實踐表明,我們的工作是可取的{26}。結論是,量子力學中,物質告訴時空如何具有概率屬性,時空告訴物質如何作概率運動。量子現象對觀察者的主觀依賴性消解在對應的時空理論之中,實現了觀察者對量子現象的客觀描述。

        雙4維時空是描述量子現象的物理時空,時空度規,無論實數部分,還是虛數部分,都是平直的{27}。

        近年來,由于量子通訊技術的飛速發展,量子糾纏的物理基礎引起了人們的特別關注,波函數的物理本質,量子力學的非定域性討論十分熱烈。“量子現象對觀察者的主觀依賴性”更是討論的核心。人們甚至被量子現象的奇異性迷惑了,特別是,有科學家甚至認為:“客觀世界很有可能并不存在”。世界是人臆造出來的?科學實在論者當然不能贊成!更加深入的探討,我們將另文討論。

        按照曹天予的評論,《雙4維復時空量子力學基礎――量子概率的時空起源》值得關注{28}。雙4維復時空與弦論、圈論比較,最大優點是將時空拓展、推廣到了復數空間,數學沒有那么復雜,而物理學基礎卻更加堅實、清晰。

        七、結論與討論

        1.“現象對觀察者的主觀依賴性”普遍存在于人與自然的關系之中,融入時空的只能是物理實體對時空有影響的部分,時空具有建構特征。

        2. 物質運動與時空的關系:牛頓力學中,物質告訴時空如何搭建運動背景,時空告訴物質如何在背景上運動;狹義相對論中,物質告訴時空如何修正測量單位,時空告訴物質如何在運動方向長度收縮、時間減緩;廣義相對論中,物質告訴時空如何彎曲,時空告訴物質如何在彎曲時空中運動;量子力學中,物質告訴時空如何具有概率屬性,時空告訴物質如何作概率運動。

        3. 量子力學時空是平直的,其方程是線性的,而廣義相對論時空是彎曲的,其方程是非線性的{29}。量子力學與廣義相對論的統一,不能機械地湊合,它們的統一,必須從改變時空的性質做起,建立相應的運動方程,并搭起非線性空間與線性空間的相互聯絡通道。

        注釋:

        ① 趙國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第5頁;Cao Tian Yu, From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism, Cambridge: Cambridge University Press, 2010, pp.202-241.

        ② Rocher Edouard, Noumenon: Elementaryentity of a Newmechanics, J. Math. Phys., 1972, 13(12), pp.1919-1925.

        ③④⑥⑦⑩{13}{15}{17}{21}{22}{24}{25}{27} w國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第5、105、9、147、179、94、133―136、106、151、151、159、152、149頁。

        ⑤ 主觀與客觀:“客觀”,觀察者外在于被觀察事物;“主觀”,觀察者參與到被觀察事物當中。 辯證唯物主義認為主觀和客觀是對立的統一,客觀不依賴于主觀而獨立存在,主觀能動地反映客觀。

        ⑧ L?斯莫林:《通向量子引力的三條途徑》,李新洲等譯,上海科學技術出版社2003年版,第29―33頁。

        ⑨ 張永德:《量子菜根譚》,清華大學出版社2012年版,第29頁;趙國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第178頁。

        {11} 馮契:《哲學大辭典》,上海辭書出版社2001年版,第1579―1582頁。

        {12} 參見L?斯莫林:《物理學的困惑》,李泳譯,湖南科學技術出版社2008年版。

        {14} 相互作用實在論中的基本概念:(1)物質:外在世界的本原。(2)基本相互作用:遍指自然力,有引力,電磁、強、弱等力。(3)自在實體:指未經觀察的“自然客體”(相互作用實在論中,自在實體作為物理研究對象時稱物理本體)。(4)現象實體:經過觀察,系統的、穩定的、深刻反映事物本質的理性認知物。現象則表現自在實體非本質的一面。(相互作用實在論中,現象實體作為物理研究對象時稱物理實體)。(5)觀測信號:人類認知世界使用的探測信號。

        {16} 參見伊?牛頓:《自然哲學之數學原理宇宙體系》,武漢出版社1996年版。

        {18} 參見倪光炯等:《近代物理學》,上海科學技術出版社1980年版。

        {19} 參見A?愛因斯坦:《相對論的意義》,科學出版社1979年版;愛因斯坦等:《物理學的進化》,周肇威譯,上海科學技術出版社1964年版。

        {20} 坂田昌一:《坂田昌一科學哲學論文集》,安度譯,知識出版社2001年版,第140頁。

        {23} 參見Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;趙國求:《雙4維時空量子力學基礎》,湖北科學技術出版社2016年版,第149頁。

        {26} 參見Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;趙國求:《雙4維時空量子力學描述》,

        《現代物理》2013年第5期;趙國求、李康、吳國林:《量子力學曲率詮釋論綱》,《武漢理工大學學報》(社會科學版)2013年第1期。

        {28} 曹天予:《當代科學哲學中的庫恩挑戰》,《中國社會科學報》2016年5月31日。

        第6篇:量子力學的應用范文

        在建立科學理論體系的過程中,往往需要以一系列巨量的、通常是至為復雜的實驗、歸納和演繹工作為基礎。而且人們一般相信科學知識就是在這個基礎上產生和累積起來的。但只要這種認識活動過程是為一個協調一致的目標所固有,只要它真正屬于科學研究自我累進的進程,則不論其如何復雜,仍只是過程性的,而不從根本上規定科學的性質、程序,乃至結論。這就使我們在考察復雜的科學認識活動時,可以抽取出高于具體手段的,基本上只屬于人類心智與外在世界相聯絡的東西,即科學語言,來作為認識的中介物。

        要說明科學語言何以能成為這樣的中介,需要先對科學的認識結構加以分析。

        作為一種形式化理論的近現代科學,其目的是力圖摹寫客觀實在。這種摹寫的認識論前提是一個外在的、自為的客體和作為其思維對立面的內在的主體間的雙重存在。這一認識論前提在科學認識方面衍生出一個更實用的前提,就是把客體看作是一種自在的“像”或者“結構”(包括動態結構,比如動力學所概括的各種關系和過程)。

        這一自在的實在具有由它的“自明性”所保證的嚴格規范性。這種自明性只在涉及存在與意識的根本關系時才可能引起懷疑。而科學是以承認這種自明性為前提的。因此科學實際就是關于具有自明性的實在的思維重構。它必須限于處理自在的實在,因為科學的嚴格規范性(主要表現為邏輯性)是由實在的自明性所保證的,任何超越實在的描述都會破壞這種描述的前提。這一點對稍后關于量子力學的討論非常重要。

        上述分析表明,科學的嚴格規范性并非如有唯理論傾向的觀點所認為的那樣,是來自思維,也并非如經驗論觀點所認為的來自具體手段對經驗表象的操作,也并不象當代某些科學哲學家所認為的純粹出于主體間的共同約定。科學的最高規范是存在在客觀實在中的,是來自客體的自明性。一切具體手段只是以這種規范為目標而去企及它。

        在科學認識活動中,不論是一個思維過程還是一個實驗過程,如果其中缺失了語言過程,那就什么意義都不會有。科學語言與人類思維形態固然有很大的關系,但是它們可能在一個很高的層次上有著共同的根源。就認識的高度而言,思維形態作為人類的一種意識現象,對它進行本質的追究,至少目前還不能完全放在客觀實在的背景上。因此,在科學認識的層次上,思維形態完全可以被視為相對獨立的東西。而科學語言則是明確地被置于實在自身這一背景之中的。這就使我們實際上可以把科學語言看作一種知識,它與系統的科學知識具有完全相同的確切性,即它首先是與實在自身相諧合,然后才以這種特殊性成為思維與對象之間的中介。這才能保證,既使科學語言所述說的科學是關于實在的確切圖景,又使思維活動具備與實在相聯絡的手段。

        科學語言作為一種知識所具備的上述特殊性,使它成為客觀實在圖景構成的基本要素,或科學知識的“基元”。思維形態不能獨立地形成知識,但思維形態卻提供某種方式,使科學語言所包含的知識基元獲得某種特定的加成和組合,從而構成一種系統化的理論。這就是語言在認識中的中介作用。由于任何事物都必須“觀念地”存乎人的意識中,才能為人的心智所把握,所以,在這個意義上,一個認識過程就是一個運用語言的過程。

        二、數學語言

        數學語言常常幾乎就是科學語言的同義詞。但實際上,科學語言所指的范圍遠比數學語言的范圍大,否則就不會出現量子力學公式的解釋問題。在自然科學發生以前,數學所起的作用也還不是后世的那種對科學的敘錄。只是由于精密推理的要求所導致的語言理想化,才推進了數學的應用。但歸根究底,數學與前面說的那種合乎客觀實在的知識基元是不同的。將數學用作科學的語言,必須滿足一個條件,即數學結構應當與實在的結構相關,但這一點并不是顯然成立的。

        愛因斯坦曾分析過數學的公理學本質。他說,對一條幾何學公理而言,古老的解釋是,它是自明的,是某一先驗知識的表述,而近代的解釋是,公理是思想的自由創造,它無須與經驗知識或直覺有關,而只對邏輯上的公理有效性負責。愛因斯坦因此指出,現代公理學意義上的數學,不能對實在客體作出任何斷言。如果把歐幾里德幾何作現代公理學意義上的理解,那么,要使幾何學對客體的行為作出斷言,就必須加上這樣一個命題:固體之間的可能的排列關系,就象三維歐幾里德幾何里的形體的關系一樣。〔1〕只有這樣,歐幾里德幾何學才成為對剛體行為的一種描述。

        愛因斯坦的這種看法與上文對科學語言的分析是基本上相通的。它可以說明,數學為什么會一貫作為科學的抽象和敘錄工具,或者它為什么看上去似乎具有作為科學語言的“先天”合理性。

        首先,作為科學的推理和記載工具的數學,實際上是從思維對實在的一些很基本的把握之上增長起來的。歐幾里得幾何學中的“點”、“直線”這樣一些概念本身就是我們以某種方式看世界的知識。之所以能用這些概念和它們之間的關系去描繪實在,是因為這些“基元”已經包含了關于實在的信息(如剛體的實際行為)。

        其次,數學體系的那種嚴密性其實主要是與人類思維的屬性有關,盡管思維的嚴密性并不是一開始就注入了數學之中。如前所述,思維的嚴密性是由實在的自明性來決定的,是習得的。這就是說,數學之所以與實在的結構相關,只是因為數學的基礎確切地說來自這種結構;而數學體系的自洽性是思維的翻版,因而是與實在的自明性同源的。

        由此可見,數學與自然科學的不同僅表現在對于它們的結果的可靠性(或真實性)的驗證上。也就是說,科學和數學同樣作為思維與實在相互介定的產物,都有可能成為對實在結構的某種描述或“偽述”,并且都具有由實在的自明性所規定的嚴密性。但數學基本上只為邏輯自治負責,而科學卻僅僅為描述的真實性負責。

        事實正是如此。數學自身并不代表真實的世界。它要成為物理學的敘錄,就必須為物理學關于實在結構的真實信息所重組。而用于重組實在圖景的每一個單元,實際上是與物理學的基本知識相一致的。如果在幾何光學中,歐幾里德幾何學不被“光線”及其傳播行為有關的概念重組,它就只是一個純粹的形式體系,而對光線的行為“不能作出斷言”。非歐幾何在現代物理學中的應用也同樣說明了這一點。

        三、物理學語言

        雖然物理學是嚴格數學化的典范,但物理學語言的歷史卻比數學應用于物理學的歷史要久遠得多。

        在認識的邏輯起點上,僅當認識論關系上一個外在的、恒常的(相對于主體的運動變化而言)對象被提煉和廓清時,才能保證一種僅僅與對象自身的內在規定性有關的語言描述系統成為可能。對此,人類憑著最初的直覺而有了“外部世界”、“空間”、“時間”、“質料”、“運動”等觀念。顯然,這些觀念并非來自邏輯的推導或數學計算,它是人類世代傳承的關于世界的知識的基元。

        然后,需要對客觀實在進行某種方式的剝離,才能使之通過語言進入我們的觀念。一個客觀實在,比如說,一個電子,當我們說“它”的時候,既指出了它作為離散的一個點(即它本身),又指出了它身處時空中的那個屬性。而后一點很重要,因為我們正是在廣延中才把握了它的存在,即從“它”與“其它”的關系中“找”出它來。

        當我們按照古希臘人(比如亞里士多德)的方式問“它為什么是它”時,我們正在試圖剝離“它”之所以為“它”的屬性。但這個屬性因其離散的本質,在時空中必為一個“奇點”,因而不能得到更多的東西。這說明,我們的語言與時空的廣延性合若符節,而對離散性,即時空中的奇點,則無法說什么。如果我們按照伽利略的方式問“它是怎樣的”時,我們正是在描繪它與廣延有關的性質,即它與其它的關系。這在時空中呈現為一種結構和過程。對此我們有足夠的手段(和語言)進行摹寫。因為我們的語言,大多來自對時空中事物的經驗。我們運用語言的主要方式,即邏輯思維,也就是時空經驗的抽象和提升。

        可見,近現代物理學語言是一種關于客觀實在的時空形式及過程的語言,是一種廣延性語言。幾何學之所以在科學史上扮演著至為重要的角色,首先不在于它的嚴格的形式化,而在于它是關于實在的時空形式及過程的一個有效而簡潔的概括,在于與物理學在面對實在時有著共同的切入點。

        上述討論表明了近現代物理學語言格式包含著它的基本用法和一個根深蒂固的傳統,這是由客觀實在和復雜的歷史因素所規定的。至為關鍵的是,它必須而且只是關于實在的時空形式及過程的描述。可以想象,離開了這種用法和傳統,“另外的描述”是不可能在這種語言中獲得意義的。而這正是量子力學碰到的問題。

        四、量子力學的語言問題

        上文說明,在描摹實在時,人類本是缺乏固有的豐富語言的。西方自古希臘以來,由于主、客體間的某種相互介定而實現了有關實在的時空形式和過程的觀念及相應的邏輯思維方式。任何一種特定的語言,隨著時代的變遷和認識的深入,某些概念的含義會發生變化,并且還會產生新的語言基元。有時,這樣的變化和增長是革命性的。但不可忽視的是,任何有革命性的新觀念首先必須在與傳統語言的關系中獲得意義,才能成為“革命性的”。在自然科學中,一種新理論不論提出多么“新”的描述,它都必須仍然是關于時空形式及過程的,才能在整體的科學語言中獲得意義。例如,相對論放棄了絕對時空、進而放棄了粒子的觀念,但代之而起的那種連續區概念仍然是時空實在性的描述并與三維空間中的經驗有著直接聯系。

        量子力學的情況則不同。微觀粒子從一個態躍遷到另一個態的中間過程沒有時空形式;客體的時空形式(波或粒子)取決于實驗安排;在不觀測的情況下,其時空形式是空缺的;并且,觀測所得的客體的時空形式并不表示客體在觀測之前的狀態。這意味著,要么微觀實在并不總是具有獨立存在的時空形式,要么是人類無法從認識的角度構成關于實在的時空形式的描述。這兩種選擇都將超出現有的物理學語言本身,而使經典物理學語言在用于解釋公式和實驗結果時受到限制。

        量子力學的這個語言問題是眾所周知的。波爾試圖通過互補原理和并協原理把這種限制本身上升為新觀念的基礎。他多次強調,即使古典物理學的語言是不精確的、有局限性的,我們仍然不得不使用這種語言,因為我們沒有別的語言。對科學理論的理解,意味著在客觀地有規律地發生的事情上,取得一致看法。而觀測和交流的全過程,是要用古典物理學來表達的。〔2〕

        量子力學的反對者愛因斯坦同樣清楚這里的語言問題。他把玻爾等人盡力把量子力學與實驗語言溝通起來所作的種種附加解釋稱之為“綏靖哲學”(Beruhigunsphilosophie)〔3〕或“文學”〔4〕,這實際上指明了互補原理等觀念是在與時空經驗相關的科學語言之外的。愛因斯坦拒絕承認量子力學是關于實在的完備描述,所以并不以為這些附加解釋會在將來成為科學語言的新的有機內容。

        薛定諤和玻姆等人從另一個角度作出的考慮,反映了他們以為玻爾、海森堡、泡利和玻恩等人的觀點回避了經典語言與實在之間的深刻矛盾,而囿于語言限制并為之作種種辯解。薛定諤說:“我只希望了解在原子內部發生了什么事情。我確實不介意您(指玻爾)選用什么語言去描述它。”〔5〕薛定諤認為,為了賦予波函數一種實在的解釋,一種全新的語言是可以考慮的。他建議將N個粒子組成的體系的波函數解釋為3N維空間中的波群,而所謂“粒子”則是干涉波的共振現象,從而徹底拋棄“粒子”的概念,使量子力學方程描述的對象具有連續的、確定的時空狀態。

        固然,幾率波的解釋使得理論的數學結構不能對應于實在的時空結構,如果讓幾率成為實驗觀察中首要的東西,就會讓客觀實在在描述中成了一種“隱喻”。然而薛定諤的解釋由于與三維空間中的經驗沒有明顯的聯系,也成了另一種隱喻,仍然無法作為一種科學語言而獲得充分的意義。

        玻姆的隱序觀念與薛定諤的解釋在語言問題上是相似的。他所說的“機械序”〔6〕其實就是以笛卡爾坐標為代表的關于廣延性空間的描述。這種描述由于經典物理學的某些限定而表現出明顯的局限性。玻姆認為量子力學并未對這種序作出真正的挑戰,在一定程度上指出了量子力學的保守性。他企圖建立一種“隱序物理學”,將量子解釋為多維實在的投影。他以全息攝影和其它一些思想實驗為比喻,試圖將客觀實在的物質形態、時空屬性和運動形式作全新的構造。但由于其基礎的薄弱,仍然只是導致了另一種脫離經驗的描述,也就是一種形而上學。

        這里所說的“基礎”指的是,一種全新的語言涉及主客體間完全不同的相互介定。它涉及對客體的完全不同的剝離方式,也就是說,現行科學語言及其相關思維方式的整個基礎都將改變。然而,現實地說,這不是某一具有特定對象和方法的學科所能為的。

        可見,試圖通過一種全新的語言來解決量子力學的語言問題是行不通的。這個問題比通常所能想象的要無可奈何得多。

        五、量子力學何種程度上是“革命性”的

        量子力學固然在解決微觀客體的問題方面,是迄今最成功的理論,然而這種應用上的重要性使人們有時相信,它在觀念上的革命也是成功的。其實,上述語言與實在圖景的沖突并未解決。量子力學的種種解釋無法在科學語言的基礎上必然過渡到那種非因果、非決定論觀念所暗示的宇宙圖景。這就使我們有必要對量子力學“革命性”的程度作審慎的認識。

        正統的量子力學學者們都意識到應該通過發展思維的豐富性來解決面臨的困難。他們作出的重要努力的一個方面是提出了很多與經典物理學不同的新觀念,并希望這些新觀念能逐漸溶入人類的思想和語言。其中玻恩用大量的論述建議幾率的觀念應該取代嚴格因果律的概念。〔7〕測不準原理以及其中的廣義坐標、廣義動量都是為粒子而設想的,卻又不能描述粒子在時空中的行為,薛定諤認為應該放棄受限制的舊概念,而玻爾卻認為不能放棄,可以用互補原理來解決。玻爾還希望,波函數這樣的“新的不變量”將逐漸被人的直覺所把握,從而進入一般知識的范圍。〔8〕這相當于說,希望產生新的語言基元。

        另一方面,海森堡等人提出,問題應該通過放棄“時空的客觀過程”這種思想來解決。〔9〕這又引起了量子力學的客觀性問題。

        這些努力在很大程度上是具有保守性的。

        我們試把量子力學與相對論作比較。相對論的革命性主要表現在,通過對時間和空間的相對性的分析,建立起時間、空間和運動的協變關系,從而了絕對時空、絕對同時性等舊觀念,并代之以新的時空觀。重要的是,在這里,絕對時空和絕對同時性是從理論上作為邏輯必然而排除掉的。四維時空不變量對三維空間和一維時間的性質依賴于觀察者的情形作了簡潔的概括,既不引起客觀性危機,又與人類的時空經驗有著直接關聯。相對論排除了物理學內部由于歷史和偶然因素形成的一些含混概念,并給出了更加準確明晰的時空圖景。它因此而在科學語言的范圍內進入了一般知識。

        量子力學的情況則不同。它的保守性主要表現在:

        第一,嚴格因果律并不是從理論的內部結構中邏輯地排除的。只是為了保護幾率波解釋,才不得不放棄嚴格因果律,這只是一種人為地避免邏輯矛盾的處理。

        第二,不完全連續性、非完全決定論等觀念并沒有構成與人類的時空經驗相關聯的自洽的實在圖景。互補原理和并協原理并沒有從理論內部挽救出獨立存在于時空的客體的概念,又沒有證明這種概念是不必要的(如相對論之于“以太”那樣)。因此,量子力學的有關哲學解釋看似拋棄舊觀念,建立新觀念,實際上,卻由于這些從理論結構上說是附加的解釋超出了關于實在的描述,因而破壞了以實在的自明性為保證的描述的前提。所以它實際上對觀念的豐富和發展所作的貢獻是有限的。

        第三,量子力學內在地不能過渡到關于個別客體的時空形式及過程的模型,使得它的反對者指責說這意味著位置和動量這樣的兩個性質不能同時是實在的。而為了保護客觀性,它的支持者說,粒子圖像和波動圖象并不表示客體的變化,而是表示關于對象的統計知識的變化。〔10〕這在關于實在的時空形式及過程的科學語言中,多少有不可知論的味道。

        第四,人們必須習慣地設想一種新的“實在”觀念以便把充滿矛盾的經驗現象統一起來。在對客體的時空形式作抽象時,這種方法是有效的。而由于波函數對應的不是個別客體的行為,所以大多新的“實在”幾乎都是形而上學的構想。薛定諤和玻姆的多維實在、玻姆在闡釋哥本哈根學派觀點時提出的那種包含了無限潛在可能性的“第三客體”〔11〕,都屬于這種構想。玻恩也曾表示,量子力學描述的是同一實在的排斥而又互補的多個影像。〔12〕這有點象是在物理學語言中談論“混元”或“太極”一樣,很難說對觀念有積極的建設。

        本文從科學語言的角度,對量子力學尤其是它的哲學基礎的保守性作出一些分析,這并不是在相對論和量子力學之間作價值上的優劣判斷。也許量子力學的真正價值恰恰在于它所碰到的困難是根本性的。

        海森堡等人與新康德主義哲學家G·赫爾曼進行討論時,赫爾曼提出,在科學賴以發生的文化中,“客體”一詞之所以有意義,正在于它被實質、因果律等范疇所規定,放棄這些范疇和它們的決定作用,就是在總體上不承認經驗的可能性。〔13〕我們應該注意到,赫爾曼所使用的“經驗”一詞,實際上是人類對客觀事物的廣延性和分立性的經驗。這種經驗是科學的實在圖景成立的基礎或真實性的保證,邏輯是它的抽象和提升。

        在本文的前三節已經談到,自從古希臘人力圖把日常語言理想化而創立了邏輯語言以來,西方的科學語言就一直是在實在的廣延性和分立性的介定下發展起來的。我們也許可以就此推測,對于人的認識而言,世界是廣延優勢的,但如果因此認為實在僅限于廣延性方面,卻是缺乏理由的。廣延性優勢在語言上的表現之一是幾何優勢。西方傳統中的代數學思想是代數幾何化,即借助空間想象來理解數的。不論畢達哥拉斯定理還是笛卡爾坐標都一樣。直角三角形的斜邊是直觀的,而根號2不是。我們可以用前者表明后者,而不能反過來。可是一個離散的數量本身究竟是什么呢?它是否與實在的另一方面或另一部分(非廣延的)相應?也許在微觀領域里不再是廣延優勢而量子力學的困難與此有關?

        如果量子力學面臨的是實在的無限可能性向語言的有限性的挑戰,那么問題的解決就不單單是語言問題,甚至不單單是目前形態的物理學的問題。它將涉及整個認識活動的基礎。玻爾似乎是深刻地意識到這一點的。他說“要做比這些更多的事情完全是在我們目前的手段之外。”〔14〕他還有一句格言;“同一個正確的陳述相對立的必是一個錯誤的陳述;但是同一個深奧的真理相對立的則可能是另一個深奧的真理。”〔15〕

        參考文獻和注釋

        〔1〕〔3〕〔4〕《愛因斯坦文集》第一卷,商務印書館,1994,第137、241、304頁。

        〔2〕〔5〕〔9〕〔13〕〔14〕〔15〕海森堡:《原子物理學的發展和社會》,中國社會科學出版社,1985,第141、84、82、131、47、112頁。

        〔6〕玻姆:《卷入——展出的宇宙和意識》,載于羅嘉昌、鄭家棟主編:《場與有——中外哲學的比較與融通(一)》,東方出版社,1994年。

        〔7〕玻恩:《關于因果和機遇的自然哲學》,商務印書館,1964年。

        第7篇:量子力學的應用范文

        【關鍵詞】原子物理學教學;教學內容;教學方法

        0 引言

        原子物理學是物理學專業的一門重要的專業基礎必修課,是繼力學、熱學、光學和電磁學之后的最后一門普通物理課程。原子物理學是普通物理的重要組成部分,它屬于近代物理[1]。原子物理學包括原子物理、原子核物理和粒子物理[2]。原子物理學是20世紀隨著量子力學的發展而發展起來的,至今,原子物理學的許多問題仍然是科學研究的前沿問題。原子物理學是現代科學技術的基礎,是連接經典物理與現代物理的橋梁。學好原子物理學能為后繼的量子力學、固體物理等課程打下堅實的理論基礎。因此,學好原子物理學具有十分重要的意義。本文根據近幾年原子物理學教學實踐,分析了教學現狀,在教學內容、教學方法上對原子物理學教學進行了研究和實踐。

        1 原子物理學教學現狀

        首先,原子物理學知識抽象、難懂,沒有清晰的物理圖像。原子物理學是研究原子的結構、運動規律及相互作用的一門科學。其研究的物質結構介于分子和原子核之間,線度約為10-10米,用肉眼是根本無法直接觀察的,只能在頭腦中想象。學生在學習的過程中普遍反映知識很抽象,摸不著頭腦,不像學習力學知識那樣,對物體運動有清晰的物理圖像。其次,教材內容過于老化。20世紀30年代M.Born寫了一本《原子物理學》,H.E.White寫了一本《原子光譜導論》,這兩本書是原子物理學方面的經典之作。現在的原子物理學教材體系一般遵循Born和White模式,大部分的教材內容都是反映20世紀30年代前后的知識,現代科技知識涉及太少。講授理論知識若缺乏實際應用的介紹,將會使知識僵化,知識面狹窄,難以激起學生的學習興趣。

        2 原子物理學教學內容的研究與實踐

        2.1 恰當處理好玻爾理論與量子力學的關系

        大部分的教材內容一般都是按照原子物理學的發展歷史進行編寫的。從原子的光譜實驗到玻爾提出的量子化假設理論(基于經典物理基礎上的量子化,半經典半量子,稱為舊量子理論),再由玻爾理論講授原子的能級、精細結構、超精細結構等。對于微觀領域,正確描述電子運動的是量子力學理論,玻爾理論是有其局限性的。最突出的問題是電子的軌道運動,根據玻爾理論,電子在庫侖力的作用下沿著一些特定的軌道繞原子核運動。在量子力學中,電子運動是由波函數來描述的,滿足薛定諤方程,電子的運動具有不確定性,只能用概率來表示,沒有軌道運動的概念,量子力學中是用“電子云”來形象說明電子的運動。教學中若處理不好玻爾理論與量子力學的關系,會讓學生覺得知識有點混亂,莫衷一是。筆者認為在原子物理學教學過程中,能用玻爾理論解決的問題就盡量不要用量子力學,如玻爾理論不能解決,則可定性地用量子力學知識來解釋,避免復雜的量子力學推導過程。原子物理學雖屬近代物理,但仍是普通物理學的重要組成部分,應該具有普通物理學的特點,要注重基本的物理實驗、物理圖像、物理思想和物理模型[3]。若用量子力學進行詳細的解釋,則要涉及波函數、算符、力學量、薛定諤方程、微擾理論等復雜的量子力學知識,會淡化和掩蓋了原子物理學的基本的物理實驗、物理圖像、物理思想和物理模型。恰當處理好玻爾理論與量子力學的關系,既能使學生易于接受原子物理學知識,又能為后繼的量子力學等課程打下基礎,使原子物理學成為連接經典物理和現代物理的橋梁。

        2.2 緊密結合現代科學技術知識

        原子物理學是現代科學技術的基礎,隨著原子物理學的發展,新思想,新知識不斷被發現,在此基礎上產生了大量的現代科學技術。如與原子受激輻射有關的激光技術;與原子的內層電子激發有關系的X射線的熒光分析技術、計算層析技術;與物質波有關的電子顯微鏡;與原子能級分裂有關的電子順磁共振和核磁共振等等,其中X射線影像、核磁共振成像已應用到醫學領域[4]。將這些科學技術知識引入到原子物理學教學中,不僅可以加深學生對所學知識的印象,還可以開闊他們的視野,激發學習興趣,培養創新意識,取得良好的學習效果。

        2.3 適當引入物理學史

        原子物理學的發展產生了許多重要的創造成果,包括1999年在內共有96項諾貝爾物理學獎,其中就有66項是與原子物理學有關的,占到總獲獎數的2/3。這些諾貝爾物理學獎的成果不僅是原子物理學發展的重要里程碑,而且是前輩物理學家創造性研究的典范[5]。在教學過程中,適當地講解一些有代表性物理學家的工作背景、研究思路、研究方法以及他們在面對困難時的科學創新精神、非凡的膽識,都會對學生留下深刻的印象,引起長久的思考。例如,電子自旋假說是20世紀初最重要的假設之一,電子自旋的提出在原子物理學發展歷史中具有里程碑的意義。1925年,荷蘭的兩位在讀大學生烏倫貝克和古德斯密特,在地球運動規律的啟發下,經過深入研究,大膽提出了電子自旋假設。但誰能想到這樣重要的理論是由兩個還沒畢業的大學生提出的。對于兩個年輕人來說,提出這樣的理論不僅需要創造精神,更需要非凡的勇氣和膽識。我們在課堂教學中引入這樣的事例,在學生中激起了強烈的反響,引發了熱烈的討論,極大地提高了他們的學習熱情和學習興趣,同時也培養了學生的創新意識和創新能力。

        3 教學方法的研究與實踐

        3.1 明確重難點,有的放矢

        原子物理學的知識面較廣,知識點松散,各知識點間的邏輯性、系統性不強,再加上學時少,一般只有54學時左右,教學任務重。因此,教學方法就顯得尤為重要。按照原子物理學教學大綱,明確教學中的重難點。每堂課都要向學生明確哪些知識需要重點掌握,哪些需要理解,哪些需要了解。重難點知識要精講、細講,從物理實驗、物理圖像、物理思想、物理模型到具體的推導過程都要講清楚,不惜面面俱到。理解性的內容可講清楚物理思想和物理圖像,不必過多涉及細節性內容。了解性的內容可讓學生課下自行學習,給出一些參考資料,讓學生以讀書報告的形式提交作業。明確教學中的重難點,學生明確了學習目標,提高了學習的積極性,促進了學生的自主學習。

        3.2 傳統板書與多媒體教學的有機結合

        傳統板書具有講課思路清晰,留給學生較多的思考時間,易于跟上講課思路等優點。對重要公式理論的推導,系統知識的梳理具有良好的教學效果。多媒體教學可演示圖片、動畫、影像資料,具有形象直觀的特點,而且幻燈片記載的信息量大,放映時間少。在原子物理學教學中,將傳統板書與多媒體教學的有機結合起來,能收到良好的教學效果。例如講電子的自旋―軌道相互作用時,先用多媒體演示電子自旋運動和軌道運動的動畫,學生頭腦中有了清晰的物理圖像,然后再采用板書的形式詳細推導其作用規律,就比較容易理解。一些著名的物理實驗現象,現代科學技術應用,著名物理學家生平簡介等都可以通過多媒體展示給學生。既能拓寬學生的知識面,還能活躍課程氣氛,激發學習興趣,提高學習積極性。

        4 小結

        原子物理學雖已有一百多年的歷史,但仍是具有生命力的,不斷向前發展的科學,原子物理學教學也應不斷地向前發展進步。本文根據近幾年原子物理學教學實踐,在教學內容、教學方法上對原子物理學教學進行了研究和實踐。以期能與同行進行討論,共同提高原子物理學教學水平。

        【參考文獻】

        [1]喀興林.關于原子物理學課程現代化問題[J].大學物理,1992,11(11):6-8.

        [2]褚圣麟.原子物理學[M].北京:高等教育出版社,2012.

        [3]高政祥.原子物理學教學改革的幾點探索[J].大學物理,2001(4):34.

        第8篇:量子力學的應用范文

        1物理學的發展過程

        1.1 宏觀低速階段

        研究宏觀低速的理論是牛頓力學,研究對象為宏觀低速運動的物體。例如:汽車、火車的運動,地球衛星的發射。在牛頓力學中,牛頓認為:質量、時間、空間都是絕對的。也就是說,對于時間來講不存在延長和收縮的問題,即時間是在一秒鐘,一秒鐘地或一個小時,一個小時地均勻流失。對于空間和質量來講也不存在著變大或變小的問題。牛頓力學的三大定律,就是在這樣的基礎上建立的。

        1.2 宏觀高速階段

        研究宏觀高速的理論是愛因斯坦的相對論力學,愛因斯坦在1905年發表了論文相對論力學。愛因斯坦認為空間、質量、時間都是相對的。并且找出了動質量和靜質量之間的關系:其中m0為靜質量;m為動質量。

        1.3 微觀低速階段

        其理論是薛定諤,海森堡兩個創立的量子力學。研究對象為分子、原子、電子、粒子等肉眼所看不見的物質。

        1.4 微觀高速階段

        理論是量子場論,研究對象為宇宙射線,放射性元素。例如:“鐳”。量子場論就是粒子通過相互作用而被產生,湮滅或相互轉化的規律。例如:通過對天外射線射向地球宇宙射線的研究發現“反粒子”,即電子的反粒子正電子。負電子與正電子相互作用湮沒—— 轉化為二個γ光子,例如“閃電”。

        2物理學與工程技術的關系

        物理學與工程技術有著密切的關系,他們之間是相互促進共同發展的。我們平時常說科學技術,實際上科學和技術是兩個不同的概念。科學解決理論問題,而技術解決實際問題。科學是發現自然界當中確實存在的事實,并且建立理論,把這些理論和現象聯系起來。科學主要是探索未知,而技術是把科學取得的成果和理論應用于實際當中,從而解決實際問題。所以技術是在理論相對比較成熟的領域里邊工作。科學與工程技術相互促進的模式主要有以下兩種。

        2.1 技術—— 物理—— 技術

        例如:蒸汽機的發明和蒸汽機在工業當中的應用形成了第一次工業革命—— 熱力學統計物理—— 蒸汽機效率的提高,內燃機,燃氣輪機的發明。這一次主要是這樣:由于蒸汽機的發明,在當初工業應用上,出現了很多應用技術的問題。例如蒸汽機發明的初期熱效率很低,大概不到5%。這樣,就對物理提出了很尖銳的問題。那就是熱機的效率最高能達到多少?熱機的效率有沒有上限?上限是多少?再一個就是通過什么樣的方式來提高熱機的效率?由于這些問題就促進了物理學的發展,正是在這些問題解決的過程當中,逐漸形成和建立了熱力學統計物理。而熱力學統計物理很好地回答了提高熱機效率的途徑,以及提高熱機效率的限度等等這些理論上的問題。

        2.2 物理—— 技術—— 物理

        例如:(1)電磁學—— 發電機,電力電器,無線電通信技術—— 電磁學;電磁學從庫侖定律的發現,以及法拉第發現電磁感應定律,直到1865年麥克斯韋建立電磁學基本理論,這些都是科學家在實驗室里邊逐漸形成的,這都是理論建立的過程,而這些理論應用于實際就發明了電動機、發電機等其它電器以及無線電通信技術,而這些實用技術的進一步發展又給電磁學提出來了許多需要解決的實際問題。正是這些問題的逐步解決,使得電磁學更加的完善和在理論上進一步得到了提高。(2)量子力學,半導體物理—— 晶體管超級大規模集成電路技術,電子計算機技術,激光技術—— 量子力學,激光物理;量子力學是20世紀初期為了解決物理上的一些疑難問題而建立起來的一種理論,這種理論應用于解決晶體的問題就形成了半導體技術,而半導體技術的進一步發展就發明了大規模集成電路和超大規模集成電路,而超大規模集成電路的發明是產生電子計算機的主要物質基礎,而正是由于電子計算機技術的發展又向量子力學提出了一些其他更加深刻需要解決的問題,而這些問題的解決就促進了量子力學的進一步發展和完善。(3)狹義相對論,質能關系E=mc2,E=mc2—— 原子彈及核能的利用—— 核物理,粒子物理,高能物理;狹義相對論是20世紀初期愛因斯坦建立的一種理論,他是為了解決電磁學等其他物理學科上的一些經典物理當中理論上的一些不協調和不自恰這樣一種矛盾而提出的一種理論,這種理論當中有一個很重要的理論結果,那就是質能關系E=mc2,E=mc2。而這種質能關系被我們稱為打開核能寶庫的鑰匙,這一理論結果的應用直接導致了或者指導了核能的應用,而對于核能的進一步應用又提出了許多新的問題,而這些新問題的進一步解決使得理論更加完善而得到進一步提高,從而形成像核物理,粒子物理,以及高能物理等等,那么實際技術上問題的解決又進一步促進了物理學的發展。

        3結語

        應該說物理和技術有著密切的聯系,物理原理及理論的初創式開發和應用都形成了當時的高新技術,物理學仍然是當代高新技術的主要源泉。所有新技術的產生都在物理學中經歷了長期醞釀。例如:1909年盧瑟福的粒子散射實驗—— 40年后的核能利用;1917年愛因斯坦的受激發射理論—— 1960年第一臺激光器的誕生等,整個信息技術的產生、發展,其硬件部分都是以物理學為基礎的。

        參考文獻

        [1] 張啟仁.經典場論[M].北京:科學出版社,2003.

        [2] 井孝功.量子力學[M].哈爾濱:哈爾濱工業大學出版社,2004.

        [3] 關洪.空間:從相對論到M理論的歷史[M].北京:清華大學出版社,2004.

        [4] 保羅·貝內特[著],蘇福忠[譯].時間[M].上海:上海人民美術出版社,2003.

        [5] G.司蒂文遜,C.W.凱爾密司特.狹義相對論[M].上海:上海科學技術出版社,1963.

        [6] 趙展岳.相對論導引[M].北京:清華大學出版社,2002.

        第9篇:量子力學的應用范文

        [關鍵詞]量子體系 對稱性 守恒定律

        一、引言

        對稱性是自然界最普遍、最重要的特性。近代科學表明,自然界的所有重要的規律均與某種對稱性有關,甚至所有自然界中的相互作用,都具有某種特殊的對稱性——所謂“規范對稱性”。實際上,對稱性的研究日趨深入,已越來越廣泛的應用到物理學的各個分支:量子論、高能物理、相對論、原子分子物理、晶體物理、原子核物理,以及化學(分子軌道理論、配位場理論等)、生物(DNA的構型對稱性等)和工程技術。

        何謂對稱性?按照英國《韋氏國際辭典》中的定義:“對稱性乃是分界線或中央平面兩側各部分在大小、形狀和相對位置的對應性”。這里講的是人們觀察客觀事物形體上的最直觀特征而形成的認識,也就是所謂的幾何對稱性。

        關于對稱性和守恒定律的研究一直是物理學中的一個重要領域,對稱性與守恒定律的本質和它們之間的關系一直是人們研究的重要內容。在經典力學中,從牛頓方程出發,在一定條件下可以導出力學量的守恒定律,粗看起來,守恒定律似乎是運動方程的結果.但從本質上來看,守恒定律比運動方程更為基本,因為它表述了自然界的一些普遍法則,支配著自然界的所有過程,制約著不同領域的運動方程.物理學關于對稱性探索的一個重要進展是諾特定理的建立,定理指出,如果運動定律在某一變換下具有不變性,必相應地存在一條守恒定律.簡言之,物理定律的一種對稱性,對應地存在一條守恒定律.經典物理范圍內的對稱性和守恒定律相聯系的諾特定理后來經過推廣,在量子力學范圍內也成立.在量子力學和粒子物理學中,又引入了一些新的內部自由度,認識了一些新的抽象空間的對稱性以及與之相應的守恒定律,這就給解決復雜的微觀問題帶來好處,尤其現在根據量子體系對稱性用群論的方法處理問題,更顯優越。

        在物理學中,尤其是在理論物理學中,我們所說的對稱性指的是體系的拉格朗日量或者哈密頓量在某種變換下的不變性。這些變換一般可分為連續變換、分立變換和對于內稟參量的變換。每一種變換下的不變性,都對應一種守恒律,意味著存在某種不可觀測量。例如,時間平移不變性,對應能量守恒,意味著時間的原點不可觀測;空間平移評議不變性,對應動量守恒,意味著空間的絕對位置不可觀測;空間旋轉不變性,對應角動量守恒,意味著空間的絕對方向不可觀測,等等。在物理學中對稱性與守恒定律占著重要地位,特別是三個普遍的守恒定律——動量、能量、角動量守恒,其重要性是眾所周知,并且在工程技術上也得到廣泛的應用。因此,為了對守恒定律的物理實質有較深刻的理解,必須研究體系的時空對稱性與守恒定律之間的關系。

        本文將著重討論非相對論情形下討論量子體系的時空對稱性與三個守恒定律的關系,并在最后給出一些我們常見的對稱變換與守恒定律的簡單介紹。

        二、對稱變換及其性質

        一個力學系統的對稱性就是它的運動規律的不變性,在經典力學里,運動規律由拉格朗日函數決定,因而時空對稱性表現為拉格朗日函數在時空變換下的不變性.在量子力學里,運動規律是薛定諤方程,它決定于系統的哈密頓算符,因此,量子力學系統的對稱性表現為哈密頓算符的不變性。

        對稱變換就是保持體系的哈密頓算符不變的變換.在變換S(例如空間平移、空間轉動等)下,體系的任何狀態ψ變為ψ(s)。

        三、對稱變換與守恒量的關系

        經典力學中守恒量就是在運動過程中不隨時間變化的量,從此考慮過渡到量子力學,當是厄米算符,則表示某個力學量,而

        然而,當不是厄米算符,則就不表示力學量.但是,若為連續變換時,我們就很方便的找到了力學量守恒。

        設是連續變換,于是可寫成為=1+IλF,λ為一無窮小參量,當λ0時,為恒等變換。考慮到除時間反演外,時空對稱變換都是幺正變換,所以

        (8)式中忽略λ的高階小量,由上式看到

        即F是厄米算符,F稱為變換算符的生成元。由此可見,當不是厄米算符時,與某個力學量F相對應。再根據可得

        (10)

        可見F是體系的一個守恒量。

        從上面的討論說明,量子體系的對稱性,對應著力學量的守恒,下面具體討論時空對稱性與動量、能量、角動量守恒。

        1.空間平移不變性(空間均勻性)與動量守恒。

        空間平移不變性就是指體系整體移動δr時,體系的哈密頓算符保持不變.當沒有外場時,體系就是具有空間平移不變性。

        設體系的坐標自r平移到,那么波函數ψ(r)變換到ψ(s)(r)

        2.空間旋轉不變性(空間各向同性)與角動量守恒

        空間旋轉不變性就是指體系整體繞任意軸n旋δφ時,體系的哈密頓算符不變。當體系處于中心對稱場或無外場時,體系具有空間旋轉不變性。

        3.時間平移不變性與能量守恒

        時間平移不變性就是指體系作時間平移時,其哈密頓算符不變。當體系處于不變外場或沒有外場時,體系的哈密頓算符與時間無關(),體系具有時間平移不變性。

        和空間平移討論類似,時間平移算符δt對波函數的作用就是使體系從態變為時間平移態:

        同樣,將(27)式的右端在T的領域展開為泰勒級數

        四、結語

        從上面的討論我們可以看到,三個守恒定律都是由于體系的時空對稱性引起的,這說明物質運動與時間空間的對稱性有著密切的聯系,并且這三個守恒定律的確立為后來認識普遍運動規律提供了線索和啟示,曾加了我們對對稱性和守恒定律的認識.對稱性和守恒定律之間的聯系,使我們認識到,任何一種對稱性,或者說一種拉格朗日或哈密頓的變換不變性,都對應著一種守恒定律和一種不可觀測量,這一結論在我們的物理研究中具有極其重要的意義,尤其是在粒子物理學和物理學中,重子數守恒、輕子數守恒和同位旋守恒等內稟參量的守恒在我們的研究中起著重要的作用.下表中我們簡要給出一些對稱性和守恒律之間的關系。

        參考文獻

        [1]戴元本.相互作用的規范理論,科學出版社,2005.

        [2]張瑞明,鐘志成.應用群倫導引.華中理工大學出版社,2001.

        [3]A.W.約什.物理學中的群倫基礎.科學出版社,1982.

        [4]W.顧萊納,B.繆勒.量子力學:對稱性.北京大學出版社,2002.

        [5]于祖榮.核物理中的群論方法.原子能出版社,1993.

        [6]卓崇培,劉文杰.時空對稱性與守恒定律.人民教育出版社,1982.

        [7]曾謹言,錢伯初.量子力學專題分析 (上冊).高等教育出版社,1990.207-208.

        [8]李政道.場論與粒子物理 (上冊).科學出版社,1980.112-119.

        相關熱門標簽
        无码人妻一二三区久久免费_亚洲一区二区国产?变态?另类_国产精品一区免视频播放_日韩乱码人妻无码中文视频
      2. <input id="zdukh"></input>
      3. <b id="zdukh"><bdo id="zdukh"></bdo></b>
          <b id="zdukh"><bdo id="zdukh"></bdo></b>
        1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

          <wbr id="zdukh"><table id="zdukh"></table></wbr>

          1. <input id="zdukh"></input>
            <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
            <sub id="zdukh"></sub>
            亚洲中文字幕一二区精品自拍 | 亚洲日本97视频在线 | 在线观看午夜福利片日本 | 伊人久久亚洲综合大香线蕉 | 亚洲AV日韩精品久久久久久 | 欧美日韩午夜视频在线观看 |