前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的納米技術(shù)論文主題范文,僅供參考,歡迎閱讀并收藏。
用于傳遞藥物的磁性納米粒子直徑通常為5-20nm,這些晶體一般是鐵的,最常見(jiàn)的是磁鐵或磁赤鐵。有幾種方法合成這些晶體,最常用的是共沉淀Fe(III)和Fe(II)。磁性納米粒子與被傳遞的基因和藥物混合封裝以促進(jìn)細(xì)胞吸收。用于磁性納米技術(shù)的有聚合物、病毒和非病毒,此外,還有形成這些復(fù)合物的輸水相互作用和靜電作用。由于要靶向體內(nèi),被處理的納米復(fù)合物通過(guò)靜脈注射、動(dòng)脈注射或腹腔內(nèi)注射,用一個(gè)外部磁場(chǎng)(通常用一個(gè)小的稀土磁體)附近的目標(biāo)區(qū)域以創(chuàng)造一個(gè)局部磁場(chǎng)。隨著藥物在血液中流動(dòng),磁場(chǎng)對(duì)帶藥的磁性納米粒子產(chǎn)生作用,驅(qū)動(dòng)它們分布到目標(biāo)組織中。與其它傳遞方法相比,磁性納米粒子對(duì)藥物的傳遞有許多優(yōu)勢(shì),它顯示出了外部磁場(chǎng)的反應(yīng),相對(duì)安全,用途更廣。磁性納米粒子被批準(zhǔn)應(yīng)用于臨床作為磁共振成像的造影劑已有十多年了,因此,是一種能根據(jù)病人安全性來(lái)被更好理解的納米技術(shù)。此外,磁性納米粒子與現(xiàn)有藥物具有廣泛的兼容性,能被用于有效傳遞各種各樣的治療藥物。
2使用磁性納米粒子的體內(nèi)基因靶向傳遞
磁性靶向傳遞技術(shù)是1978年被首次提出來(lái)的,這種方法類(lèi)似于藥物傳遞,對(duì)治療基因的傳遞有著巨大的潛力,盡管該技術(shù)的應(yīng)用必須適應(yīng)核酸分子的大小和電荷數(shù)。有趣的是,磁性傳遞為解決當(dāng)前基因治療中的有效傳遞問(wèn)題提供了很大的可能性。例如,將磁性納米粒子與基因載體混合,治療基因通過(guò)外部磁場(chǎng)被選擇性地輸送到腫瘤部位,增加了治療基因的濃度,同時(shí)也減少了治療基因在身體其它部位的停留。
2.1局部給藥系統(tǒng)臨床試驗(yàn)中腫瘤靶向給藥一直是在腫瘤內(nèi)或腫瘤附近注射給藥,磁轉(zhuǎn)染在腫瘤局部給藥中有兩個(gè)可能的優(yōu)勢(shì):第一、它能增加注射部位細(xì)胞對(duì)藥物的吸收和滯留;Bhattarai等人通過(guò)直接在空腸和氣管內(nèi)注射的方法向體內(nèi)傳遞經(jīng)過(guò)修飾的腺病毒載體表達(dá)結(jié)合了磁性納米粒子的LacZ基因,發(fā)現(xiàn)在磁性組中的肺部和空腸內(nèi)β-半乳糖苷酶的活性明顯高于對(duì)照組。這表明在外部磁場(chǎng)下基因的滯留和表達(dá)都有所增強(qiáng)。雖然這種方法可能不適用于非侵入性腫瘤的治療,但也顯示了磁轉(zhuǎn)染有提高注射基因在腫瘤內(nèi)的滯留效果的可能。在局部傳遞中磁轉(zhuǎn)染的另一個(gè)優(yōu)勢(shì)就是對(duì)腫瘤的穿透性。目前的傳遞方法不能有效的將治療基因傳遞到腫瘤塊的所有區(qū)域,尤其是低氧中心,部分是由于許多腫瘤內(nèi)部有復(fù)雜的脈管系統(tǒng)。另外,這被認(rèn)為是一個(gè)進(jìn)步,考慮到耐藥性的問(wèn)題。已證明磁轉(zhuǎn)染粒子的局部傳遞能增加靶組織內(nèi)的基因積累和基因?qū)δ[瘤內(nèi)較小動(dòng)脈的穿透力。Krotz等人采用靶向提睪肌的股動(dòng)脈注射帶有熒光標(biāo)記的寡聚脫氧核苷酸后發(fā)現(xiàn)磁性組的熒光強(qiáng)度增加,此外,在較小動(dòng)脈內(nèi)有很強(qiáng)的熒光。較小動(dòng)脈內(nèi)的熒光增強(qiáng)顯示磁靶向能增加基因和藥物的組織滲透性,說(shuō)明了這種方法可能會(huì)增加經(jīng)血液傳遞給腫瘤組織的基因和藥物的滲透力。
2.2全身給藥系統(tǒng)全身給藥系統(tǒng)是研發(fā)新的傳遞技術(shù)的最終目標(biāo),因?yàn)樗鼙粡V泛的應(yīng)用于各種臨床適應(yīng)癥,也方便治療。此外,小鼠的人類(lèi)腫瘤移植模型提供了一種在活體內(nèi)測(cè)試靶向給藥以及在外部控制磁轉(zhuǎn)染的簡(jiǎn)單方法。盡管人類(lèi)移植腫瘤能提供寶貴的信息,便于深入了解全身給藥系統(tǒng)的效果,但是這些模型可能大大低估了在病人體內(nèi)靶向給藥的復(fù)雜性。迄今,已被驗(yàn)證的磁轉(zhuǎn)染作為活體內(nèi)癌癥治療最有前途的應(yīng)用是在人類(lèi)腫瘤移植的小鼠模型中。用磁性納米粒子-脂質(zhì)體復(fù)合物傳遞熒光素酶質(zhì)粒,Namiki等人發(fā)現(xiàn)外部有磁鐵并經(jīng)過(guò)納米粒子處理的動(dòng)物組有很強(qiáng)的熒光素酶活性,傳遞相同劑量基因的其他的對(duì)照組卻沒(méi)有明顯的表達(dá)。這個(gè)結(jié)果在腫瘤組織勻漿中的二次試驗(yàn)得到證實(shí),那個(gè)實(shí)驗(yàn)是用siRNA干擾磁性組中的EGF受體,而在非磁性組中沒(méi)用siRNA。與有外部磁鐵靶向的控制組相比,對(duì)照組中腫瘤塊EGF受體的siRNA傳遞減少了50%。還有一項(xiàng)研究也顯示了不同的納米復(fù)合物組分與療效之間的差異。相比于之前使用的磁性復(fù)合物,新配方在非目標(biāo)器官中siRNA的積累量減少10倍,提出增加配方的選擇性可以提高對(duì)器官的靶向性。這可能是由于新配方的尺寸較小的緣故??傊?,這些結(jié)果都是磁轉(zhuǎn)染具有明確療效強(qiáng)有力的證據(jù),除了用傳遞報(bào)告基因來(lái)證實(shí)外。單核細(xì)胞由于其具有與腫瘤細(xì)胞天然的親和力,也被用來(lái)作為癌癥治療的基因載體。一種方法是先將單核細(xì)胞在體外轉(zhuǎn)染,再經(jīng)過(guò)血液注射將治療基因傳遞到腫瘤組織。這種方法雖然避免了非內(nèi)源性載體引起的組織毒性,但問(wèn)題一直是沒(méi)有靶向足夠數(shù)目的腫瘤細(xì)胞。Muthana等人最新的研究檢查了傳遞磁性納米粒子基因的單核細(xì)胞在腫瘤組織中的生長(zhǎng)能力。作者發(fā)現(xiàn)磁性組中16.9±4.2%的腫瘤細(xì)胞表達(dá)GFP,而在非磁性組中腫瘤細(xì)胞GFP的表達(dá)大量增加,增量超過(guò)4.9±3.5%。沒(méi)有數(shù)據(jù)顯示這是否會(huì)導(dǎo)致單核細(xì)胞在肝臟中的減少,這項(xiàng)研究也沒(méi)有顯示任何治療效果,它傳遞的是一個(gè)標(biāo)志基因,它證明了磁性納米粒子能被用于改善細(xì)胞作為基因載體的功能。
3小結(jié)與展望
1納米孔生物技術(shù)的改進(jìn)
從嵌入溶血素蛋白通道對(duì)血脂的試驗(yàn)研究開(kāi)始,研究者們?cè)谶^(guò)去10年中開(kāi)發(fā)和探索了多種類(lèi)型的納米孔。α-溶血素是一種能天然性地連接到細(xì)胞膜中繼而導(dǎo)致細(xì)胞溶解的蛋白質(zhì),它第一個(gè)被用來(lái)做成生物納米孔模型。模型中,一層生物膜將溶液分為2個(gè)區(qū)域,α-溶血素蛋白嵌入生物膜中形成納米孔。當(dāng)DNA分子穿過(guò)納米孔時(shí)阻斷電流會(huì)發(fā)生變化,這時(shí)靈敏電子元件就能檢測(cè)電流的變化。但是,由于4種堿基的理化性質(zhì)比較接近,所以讀取序列實(shí)際上比想象的困難得多。此外,有效減少電子噪聲仍舊是個(gè)挑戰(zhàn),通過(guò)降低DNA的位移速率可以部分減少噪聲。最近出現(xiàn)了新形式的仿生納米孔,其中包括絲蛋白毛孔[1]和仿生核孔復(fù)合物[2]??缈仔纬傻膫?cè)電極使通過(guò)納米孔轉(zhuǎn)運(yùn)的生物分子的電子檢測(cè)成為可能[3]。采用等離子體減薄[4]和離子束雕刻技術(shù)[5]得到的超薄納米孔也被開(kāi)發(fā)出來(lái)。通過(guò)耦合到納米孔上的掃描探針顯微鏡[6]和硅納米線晶體管[7],證實(shí)了這種使用靜電效應(yīng)和場(chǎng)效應(yīng)的替代檢測(cè)方式的可行性。石墨烯是一種由碳原子以sp2雜化軌道組成六角型呈蜂巢晶格的平面薄膜,目前已經(jīng)成為制作超薄納米孔膜材料[8]的首選。石墨烯的帶電特性、韌度、原子厚度以及其電子抗?jié)B性能,使得其成為納米孔DNA序列測(cè)序的熱點(diǎn)材料。石墨烯薄片膜[9]和自對(duì)準(zhǔn)碳素電擊[10]形成方面的新進(jìn)展,促進(jìn)了碳納米結(jié)構(gòu)與納米孔技術(shù)的整合。對(duì)進(jìn)入納米孔分子的自動(dòng)捕捉可實(shí)現(xiàn)分子結(jié)構(gòu)和動(dòng)力學(xué)的檢測(cè)分析。這項(xiàng)改進(jìn)技術(shù)已經(jīng)應(yīng)用于對(duì)孔泡附近的擴(kuò)散現(xiàn)象研究,這也是未來(lái)生物研究的基礎(chǔ)。對(duì)金屬孔上離子轉(zhuǎn)運(yùn)的研究,例如金表面的納米孔[11],可以作為一種方法用于創(chuàng)建種選擇性納米孔系統(tǒng)[12],這一系統(tǒng)也是研究者感興趣的生物分子檢測(cè)系統(tǒng)。
2納米孔在生物技術(shù)上的應(yīng)用
迄今為止,DNA是納米孔研究中最常見(jiàn)的聚合物,脂質(zhì)嵌入式離子通道檢測(cè)DNA是這項(xiàng)研究開(kāi)創(chuàng)性的示范。最近,固態(tài)納米孔已用于檢測(cè)核小體亞結(jié)構(gòu)的不同[13]以及RNA聚合酶催化DNA轉(zhuǎn)錄的關(guān)鍵部分,為了解染色體的結(jié)構(gòu)和轉(zhuǎn)錄研究創(chuàng)造了新機(jī)遇。生物納米孔在富含鳥(niǎo)嘌呤的G-四鏈體檢測(cè)方面的應(yīng)用,對(duì)基因組學(xué)和表觀遺傳學(xué)的發(fā)展起著重要的推動(dòng)作用[14]。脫堿基位點(diǎn)也可以用納米孔動(dòng)態(tài)檢測(cè),通過(guò)阻斷含離子載體的電解質(zhì)溶液,高壓輔助下的蛋白質(zhì)易位以及使用配體修飾納米孔蛋白的不同都得到了論證[15]。某些蛋白質(zhì)在轉(zhuǎn)運(yùn)時(shí)發(fā)生“解壓”,轉(zhuǎn)運(yùn)過(guò)程便可用于成為測(cè)量解壓動(dòng)力學(xué)。許多這種蛋白質(zhì)的解壓行為已經(jīng)得到了研究,納米孔可作為無(wú)需標(biāo)記的高效力譜儀[16]動(dòng)態(tài)使用。重要的神經(jīng)傳導(dǎo)物也得到了動(dòng)態(tài)實(shí)時(shí)區(qū)分,以期用于研究大腦對(duì)藥物的化學(xué)反應(yīng)[17]。與其檢測(cè)技術(shù)相比,納米孔更具發(fā)展前景,其高效、快速且價(jià)格低廉,準(zhǔn)確度和檢測(cè)性能良好。其他納米孔結(jié)構(gòu)為生物領(lǐng)域提供了多種新研究和技術(shù)。大型固態(tài)納米孔可以用來(lái)動(dòng)態(tài)地捕獲釋放的細(xì)菌,為動(dòng)態(tài)捕獲單細(xì)胞提供了更快速低廉的方法。使用脂肽包被的固態(tài)納米孔,可以探測(cè)到DNA與鄰近孔膜的相互作用[18]。熱反應(yīng)聚合物的提出推進(jìn)了智能納米孔的發(fā)展,智能納米孔可以作為動(dòng)態(tài)響應(yīng)溫度的裝置,電解質(zhì)刷組成的生物納米孔可控制孔附近的鹽電導(dǎo)。DNA測(cè)序納米孔的研究也取得了進(jìn)展,一項(xiàng)最新的分子動(dòng)力學(xué)研究顯示,運(yùn)用DNA聚合酶作為棘輪,通過(guò)控制石墨烯納米孔上DNA單鏈的轉(zhuǎn)運(yùn),可獲得核苷酸序列的高精讀數(shù)。使用溶血素中的鏈霉親和素可選擇性固定DNA鏈,可高分辨率區(qū)分孔上不同幾何位置的核酸。P-n半導(dǎo)體結(jié)可放慢DNA易位的速度,移位過(guò)程中這種半導(dǎo)體結(jié)可以動(dòng)態(tài)控制電壓。運(yùn)用新型的基于CMSO的放大器,可實(shí)現(xiàn)亞微秒時(shí)間內(nèi)的電流檢測(cè)。關(guān)于DNA測(cè)序的理論研究,為解決上述提到的離子電流測(cè)定速度的限制問(wèn)題提出了可行性的建議和方法。模擬顯示,石墨烯碳納米帶上的納米孔可以利用孔隙邊緣的電流密度,從而產(chǎn)生較高的分辨率。垂直于納米通道放置的石墨烯碳納米帶上的電導(dǎo)變化,也被建議作為DNA堿基易位測(cè)序設(shè)備。
3結(jié)語(yǔ)
一、各國(guó)競(jìng)相出臺(tái)納米科技發(fā)展戰(zhàn)略和計(jì)劃
由于納米技術(shù)對(duì)國(guó)家未來(lái)經(jīng)濟(jì)、社會(huì)發(fā)展及國(guó)防安全具有重要意義,世界各國(guó)(地區(qū))紛紛將納米技術(shù)的研發(fā)作為21世紀(jì)技術(shù)創(chuàng)新的主要驅(qū)動(dòng)器,相繼制定了發(fā)展戰(zhàn)略和計(jì)劃,以指導(dǎo)和推進(jìn)本國(guó)納米科技的發(fā)展。目前,世界上已有50多個(gè)國(guó)家制定了國(guó)家級(jí)的納米技術(shù)計(jì)劃。一些國(guó)家雖然沒(méi)有專(zhuān)項(xiàng)的納米技術(shù)計(jì)劃,但其他計(jì)劃中也往往包含了納米技術(shù)相關(guān)的研發(fā)。
(1)發(fā)達(dá)國(guó)家和地區(qū)雄心勃勃
為了搶占納米科技的先機(jī),美國(guó)早在2000年就率先制定了國(guó)家級(jí)的納米技術(shù)計(jì)劃(NNI),其宗旨是整合聯(lián)邦各機(jī)構(gòu)的力量,加強(qiáng)其在開(kāi)展納米尺度的科學(xué)、工程和技術(shù)開(kāi)發(fā)工作方面的協(xié)調(diào)。2003年11月,美國(guó)國(guó)會(huì)又通過(guò)了《21世紀(jì)納米技術(shù)研究開(kāi)發(fā)法案》,這標(biāo)志著納米技術(shù)已成為聯(lián)邦的重大研發(fā)計(jì)劃,從基礎(chǔ)研究、應(yīng)用研究到研究中心、基礎(chǔ)設(shè)施的建立以及人才的培養(yǎng)等全面展開(kāi)。
日本政府將納米技術(shù)視為“日本經(jīng)濟(jì)復(fù)興”的關(guān)鍵。第二期科學(xué)技術(shù)基本計(jì)劃將生命科學(xué)、信息通信、環(huán)境技術(shù)和納米技術(shù)作為4大重點(diǎn)研發(fā)領(lǐng)域,并制定了多項(xiàng)措施確保這些領(lǐng)域所需戰(zhàn)略資源(人才、資金、設(shè)備)的落實(shí)。之后,日本科技界較為徹底地貫徹了這一方針,積極推進(jìn)從基礎(chǔ)性到實(shí)用性的研發(fā),同時(shí)跨省廳重點(diǎn)推進(jìn)能有效促進(jìn)經(jīng)濟(jì)發(fā)展和加強(qiáng)國(guó)際競(jìng)爭(zhēng)力的研發(fā)。
歐盟在2002—2007年實(shí)施的第六個(gè)框架計(jì)劃也對(duì)納米技術(shù)給予了空前的重視。該計(jì)劃將納米技術(shù)作為一個(gè)最優(yōu)先的領(lǐng)域,有13億歐元專(zhuān)門(mén)用于納米技術(shù)和納米科學(xué)、以知識(shí)為基礎(chǔ)的多功能材料、新生產(chǎn)工藝和設(shè)備等方面的研究。歐盟委員會(huì)還力圖制定歐洲的納米技術(shù)戰(zhàn)略,目前,已確定了促進(jìn)歐洲納米技術(shù)發(fā)展的5個(gè)關(guān)鍵措施:增加研發(fā)投入,形成勢(shì)頭;加強(qiáng)研發(fā)基礎(chǔ)設(shè)施;從質(zhì)和量方面擴(kuò)大人才資源;重視工業(yè)創(chuàng)新,將知識(shí)轉(zhuǎn)化為產(chǎn)品和服務(wù);考慮社會(huì)因素,趨利避險(xiǎn)。另外,包括德國(guó)、法國(guó)、愛(ài)爾蘭和英國(guó)在內(nèi)的多數(shù)歐盟國(guó)家還制定了各自的納米技術(shù)研發(fā)計(jì)劃。
(2)新興工業(yè)化經(jīng)濟(jì)體瞄準(zhǔn)先機(jī)
意識(shí)到納米技術(shù)將會(huì)給人類(lèi)社會(huì)帶來(lái)巨大的影響,韓國(guó)、中國(guó)臺(tái)灣等新興工業(yè)化經(jīng)濟(jì)體,為了保持競(jìng)爭(zhēng)優(yōu)勢(shì),也紛紛制定納米科技發(fā)展戰(zhàn)略。韓國(guó)政府2001年制定了《促進(jìn)納米技術(shù)10年計(jì)劃》,2002年頒布了新的《促進(jìn)納米技術(shù)開(kāi)發(fā)法》,隨后的2003年又頒布了《納米技術(shù)開(kāi)發(fā)實(shí)施規(guī)則》。韓國(guó)政府的政策目標(biāo)是融合信息技術(shù)、生物技術(shù)和納米技術(shù)3個(gè)主要技術(shù)領(lǐng)域,以提升前沿技術(shù)和基礎(chǔ)技術(shù)的水平;到2010年10年計(jì)劃結(jié)束時(shí),韓國(guó)納米技術(shù)研發(fā)要達(dá)到與美國(guó)和日本等領(lǐng)先國(guó)家的水平,進(jìn)入世界前5位的行列。
中國(guó)臺(tái)灣自1999年開(kāi)始,相繼制定了《納米材料尖端研究計(jì)劃》、《納米科技研究計(jì)劃》,這些計(jì)劃以人才和核心設(shè)施建設(shè)為基礎(chǔ),以追求“學(xué)術(shù)卓越”和“納米科技產(chǎn)業(yè)化”為目標(biāo),意在引領(lǐng)臺(tái)灣知識(shí)經(jīng)濟(jì)的發(fā)展,建立產(chǎn)業(yè)競(jìng)爭(zhēng)優(yōu)勢(shì)。
(3)發(fā)展中大國(guó)奮力趕超
綜合國(guó)力和科技實(shí)力較強(qiáng)的發(fā)展中國(guó)家為了迎頭趕上發(fā)達(dá)國(guó)家納米科技發(fā)展的勢(shì)頭,也制定了自己的納米科技發(fā)展戰(zhàn)略。中國(guó)政府在2001年7月就了《國(guó)家納米科技發(fā)展綱要》,并先后建立了國(guó)家納米科技指導(dǎo)協(xié)調(diào)委員會(huì)、國(guó)家納米科學(xué)中心和納米技術(shù)專(zhuān)門(mén)委員會(huì)。目前正在制定中的國(guó)家中長(zhǎng)期科技發(fā)展綱要將明確中國(guó)納米科技發(fā)展的路線圖,確定中國(guó)在目前和中長(zhǎng)期的研發(fā)任務(wù),以便在國(guó)家層面上進(jìn)行指導(dǎo)與協(xié)調(diào),集中力量、發(fā)揮優(yōu)勢(shì),爭(zhēng)取在幾個(gè)方面取得重要突破。鑒于未來(lái)最有可能的技術(shù)浪潮是納米技術(shù),南非科技部正在制定一項(xiàng)國(guó)家納米技術(shù)戰(zhàn)略,可望在2005年度執(zhí)行。印度政府也通過(guò)加大對(duì)從事材料科學(xué)研究的科研機(jī)構(gòu)和項(xiàng)目的支持力度,加強(qiáng)材料科學(xué)中具有廣泛應(yīng)用前景的納米技術(shù)的研究和開(kāi)發(fā)。
二、納米科技研發(fā)投入一路攀升
納米科技已在國(guó)際間形成研發(fā)熱潮,現(xiàn)在無(wú)論是富裕的工業(yè)化大國(guó)還是渴望富裕的工業(yè)化中國(guó)家,都在對(duì)納米科學(xué)、技術(shù)與工程投入巨額資金,而且投資迅速增加。據(jù)歐盟2004年5月的一份報(bào)告稱(chēng),在過(guò)去10年里,世界公共投資從1997年的約4億歐元增加到了目前的30億歐元以上。私人的納米技術(shù)研究資金估計(jì)為20億歐元。這說(shuō)明,全球?qū){米技術(shù)研發(fā)的年投資已達(dá)50億歐元。
美國(guó)的公共納米技術(shù)投資最多。在過(guò)去4年內(nèi),聯(lián)邦政府的納米技術(shù)研發(fā)經(jīng)費(fèi)從2000年的2.2億美元增加到2003年的7.5億美元,2005年將增加到9.82億美元。更重要的是,根據(jù)《21世紀(jì)納米技術(shù)研究開(kāi)發(fā)法》,在2005~2008財(cái)年聯(lián)邦政府將對(duì)納米技術(shù)計(jì)劃投入37億美元,而且這還不包括國(guó)防部及其他部門(mén)將用于納米研發(fā)的經(jīng)費(fèi)。
日本目前是僅次于美國(guó)的第二大納米技術(shù)投資國(guó)。日本早在20世紀(jì)80年代就開(kāi)始支持納米科學(xué)研究,近年來(lái)納米科技投入迅速增長(zhǎng),從2001年的4億美元激增至2003年的近8億美元,而2004年還將增長(zhǎng)20%。
在歐洲,根據(jù)第六個(gè)框架計(jì)劃,歐盟對(duì)納米技術(shù)的資助每年約達(dá)7.5億美元,有些人估計(jì)可達(dá)9.15億美元。另有一些人估計(jì),歐盟各國(guó)和歐盟對(duì)納米研究的總投資可能兩倍于美國(guó),甚至更高。
中國(guó)期望今后5年內(nèi)中央政府的納米技術(shù)研究支出達(dá)到2.4億美元左右;另外,地方政府也將支出2.4億~3.6億美元。中國(guó)臺(tái)灣計(jì)劃從2002~2007年在納米技術(shù)相關(guān)領(lǐng)域中投資6億美元,每年穩(wěn)中有增,平均每年達(dá)1億美元。韓國(guó)每年的納米技術(shù)投入預(yù)計(jì)約為1.45億美元,而新加坡則達(dá)3.7億美元左右。
就納米科技人均公共支出而言,歐盟25國(guó)為2.4歐元,美國(guó)為3.7歐元,日本為6.2歐元。按照計(jì)劃,美國(guó)2006年的納米技術(shù)研發(fā)公共投資增加到人均5歐元,日本2004年增加到8歐元,因此歐盟與美日之間的差距有增大之勢(shì)。公共納米投資占GDP的比例是:歐盟為0.01%,美國(guó)為0.01%,日本為0.02%。
另外,據(jù)致力于納米技術(shù)行業(yè)研究的美國(guó)魯克斯資訊公司2004年的一份年度報(bào)告稱(chēng),很多私營(yíng)企業(yè)對(duì)納米技術(shù)的投資也快速增加。美國(guó)的公司在這一領(lǐng)域的投入約為17億美元,占全球私營(yíng)機(jī)構(gòu)38億美元納米技術(shù)投資的46%。亞洲的企業(yè)將投資14億美元,占36%。歐洲的私營(yíng)機(jī)構(gòu)將投資6.5億美元,占17%。由于投資的快速增長(zhǎng),納米技術(shù)的創(chuàng)新時(shí)代必將到來(lái)。
三、世界各國(guó)納米科技發(fā)展各有千秋
各納米科技強(qiáng)國(guó)比較而言,美國(guó)雖具有一定的優(yōu)勢(shì),但現(xiàn)在尚無(wú)確定的贏家和輸家。
(1)在納米科技論文方面日、德、中三國(guó)不相上下
根據(jù)中國(guó)科技信息研究所進(jìn)行的納米論文統(tǒng)計(jì)結(jié)果,2000—2002年,共有40370篇納米研究論文被《2000—2002年科學(xué)引文索引(SCI)》收錄。納米研究論文數(shù)量逐年增長(zhǎng),且增長(zhǎng)幅度較大,2001年和2002年的增長(zhǎng)率分別達(dá)到了30.22%和18.26%。
2000—2002年納米研究論文,美國(guó)以較大的優(yōu)勢(shì)領(lǐng)先于其他國(guó)家,3年累計(jì)論文數(shù)超過(guò)10000篇,幾乎占全部論文產(chǎn)出的30%。日本(12.76%)、德國(guó)(11.28%)、中國(guó)(10.64%)和法國(guó)(7.89%)位居其后,它們各自的論文總數(shù)都超過(guò)了3000篇。而且以上5國(guó)2000—2002年每年的納米論文產(chǎn)出大都超過(guò)了1000篇,是納米研究最活躍的國(guó)家,也是納米研究實(shí)力最強(qiáng)的國(guó)家。中國(guó)的增長(zhǎng)幅度最為突出,2000年中國(guó)納米論文比例還落后德國(guó)2個(gè)多百分點(diǎn),到2002年已經(jīng)超過(guò)德國(guó),位居世界第三位,與日本接近。
在上述5國(guó)之后,英國(guó)、俄羅斯、意大利、韓國(guó)、西班牙發(fā)表的論文數(shù)也較多,各國(guó)3年累計(jì)論文總數(shù)都超過(guò)了1000篇,且每年的論文數(shù)排位都可以進(jìn)入前10名。這5個(gè)國(guó)家可以列為納米研究較活躍的國(guó)家。
另外,如果歐盟各國(guó)作為一個(gè)整體,其論文量則超過(guò)36%,高于美國(guó)的29.46%。
(2)在申請(qǐng)納米技術(shù)發(fā)明專(zhuān)利方面美國(guó)獨(dú)占鰲頭
據(jù)統(tǒng)計(jì):美國(guó)專(zhuān)利商標(biāo)局2000—2002年共受理2236項(xiàng)關(guān)于納米技術(shù)的專(zhuān)利。其中最多的國(guó)家是美國(guó)(1454項(xiàng)),其次是日本(368項(xiàng))和德國(guó)(118項(xiàng))。由于專(zhuān)利數(shù)據(jù)來(lái)源美國(guó)專(zhuān)利商標(biāo)局,所以美國(guó)的專(zhuān)利數(shù)量非常多,所占比例超過(guò)了60%。日本和德國(guó)分別以16.46%和5.28%的比例列在第二位和第三位。英國(guó)、韓國(guó)、加拿大、法國(guó)和中國(guó)臺(tái)灣的專(zhuān)利數(shù)也較多,所占比例都超過(guò)了1%。
專(zhuān)利反映了研究成果實(shí)用化的能力。多數(shù)國(guó)家納米論文數(shù)與專(zhuān)利數(shù)所占比例的反差較大,在論文數(shù)最多的20個(gè)國(guó)家和地區(qū)中,專(zhuān)利數(shù)所占比例超過(guò)論文數(shù)所占比例的國(guó)家和地區(qū)只有美國(guó)、日本和中國(guó)臺(tái)灣。這說(shuō)明,很多國(guó)家和地區(qū)在納米技術(shù)研究上具備一定的實(shí)力,但比較側(cè)重于基礎(chǔ)研究,而實(shí)用化能力較弱。
(3)就整體而言納米科技大國(guó)各有所長(zhǎng)
美國(guó)納米技術(shù)的應(yīng)用研究在半導(dǎo)體芯片、癌癥診斷、光學(xué)新材料和生物分子追蹤等領(lǐng)域快速發(fā)展。隨著納米技術(shù)在癌癥診斷和生物分子追蹤中的應(yīng)用,目前美國(guó)納米研究熱點(diǎn)已逐步轉(zhuǎn)向醫(yī)學(xué)領(lǐng)域。醫(yī)學(xué)納米技術(shù)已經(jīng)被列為美國(guó)國(guó)家的優(yōu)先科研計(jì)劃。在納米醫(yī)學(xué)方面,納米傳感器可在實(shí)驗(yàn)室條件下對(duì)多種癌癥進(jìn)行早期診斷,而且,已能在實(shí)驗(yàn)室條件下對(duì)前列腺癌、直腸癌等多種癌癥進(jìn)行早期診斷。2004年,美國(guó)國(guó)立衛(wèi)生研究院癌癥研究所專(zhuān)門(mén)出臺(tái)了一項(xiàng)《癌癥納米技術(shù)計(jì)劃》,目的是將納米技術(shù)、癌癥研究與分子生物醫(yī)學(xué)相結(jié)合,實(shí)現(xiàn)2015年消除癌癥死亡和痛苦的目標(biāo);利用納米顆粒追蹤活性物質(zhì)在生物體內(nèi)的活動(dòng)也是一個(gè)研究熱門(mén),這對(duì)于研究艾滋病病毒、癌細(xì)胞等在人體內(nèi)的活動(dòng)情況非常有用,還可以用來(lái)檢測(cè)藥物對(duì)病毒的作用效果。利用納米顆粒追蹤病毒的研究也已有成果,未來(lái)5~10年有望商業(yè)化。
雖然醫(yī)學(xué)納米技術(shù)正成為納米科技的新熱點(diǎn),納米技術(shù)在半導(dǎo)體芯片領(lǐng)域的應(yīng)用仍然引人關(guān)注。美國(guó)科研人員正在加緊納米級(jí)半導(dǎo)體材料晶體管的應(yīng)用研究,期望突破傳統(tǒng)的極限,讓芯片體積更小、速度更快。納米顆粒的自組裝技術(shù)是這一領(lǐng)域中最受關(guān)注的地方。不少科學(xué)家試圖利用化學(xué)反應(yīng)來(lái)合成納米顆粒,并按照一定規(guī)則排列這些顆粒,使其成為體積小而運(yùn)算快的芯片。這種技術(shù)本來(lái)有望取代傳統(tǒng)光刻法制造芯片的技術(shù)。在光學(xué)新材料方面,目前已有可控直徑5納米到幾百納米、可控長(zhǎng)度達(dá)到幾百微米的納米導(dǎo)線。
日本納米技術(shù)的研究開(kāi)發(fā)實(shí)力強(qiáng)大,某些方面處于世界領(lǐng)先水平,但尚未脫離基礎(chǔ)和應(yīng)用研究階段,距離實(shí)用化還有相當(dāng)一段路要走。在納米技術(shù)的研發(fā)上,日本最重視的是應(yīng)用研究,尤其是納米新材料研究。除了碳納米管外,日本開(kāi)發(fā)出多種不同結(jié)構(gòu)的納米材料,如納米鏈、中空微粒、多層螺旋狀結(jié)構(gòu)、富勒結(jié)構(gòu)套富勒結(jié)構(gòu)、納米管套富勒結(jié)構(gòu)、酒杯疊酒杯狀結(jié)構(gòu)等。
在制造方法上,日本不斷改進(jìn)電弧放電法、化學(xué)氣相合成法和激光燒蝕法等現(xiàn)有方法,同時(shí)積極開(kāi)發(fā)新的制造技術(shù),特別是批量生產(chǎn)技術(shù)。細(xì)川公司展出的低溫連續(xù)燒結(jié)設(shè)備引起關(guān)注。它能以每小時(shí)數(shù)千克的速度制造粒徑在數(shù)十納米的單一和復(fù)合的超微粒材料。東麗和三菱化學(xué)公司應(yīng)用大學(xué)開(kāi)發(fā)的新技術(shù)能把制造碳納米材料的成本減至原來(lái)的1/10,兩三年內(nèi)即可進(jìn)入批量生產(chǎn)階段。
日本高度重視開(kāi)發(fā)檢測(cè)和加工技術(shù)。目前廣泛應(yīng)用的掃描隧道顯微鏡、原子力顯微鏡、近場(chǎng)光學(xué)顯微鏡等的性能不斷提高,并涌現(xiàn)了諸如數(shù)字式顯微鏡、內(nèi)藏高級(jí)照相機(jī)顯微鏡、超高真空掃描型原子力顯微鏡等新產(chǎn)品。科學(xué)家村田和廣成功開(kāi)發(fā)出亞微米噴墨印刷裝置,能應(yīng)用于納米領(lǐng)域,在硅、玻璃、金屬和有機(jī)高分子等多種材料的基板上印制細(xì)微電路,是世界最高水平。
日本企業(yè)、大學(xué)和研究機(jī)構(gòu)積極在信息技術(shù)、生物技術(shù)等領(lǐng)域內(nèi)為納米技術(shù)尋找用武之地,如制造單個(gè)電子晶體管、分子電子元件等更細(xì)微、更高性能的元器件和量子計(jì)算機(jī),解析分子、蛋白質(zhì)及基因的結(jié)構(gòu)等。不過(guò),這些研究大都處于探索階段,成果為數(shù)不多。
歐盟在納米科學(xué)方面頗具實(shí)力,特別是在光學(xué)和光電材料、有機(jī)電子學(xué)和光電學(xué)、磁性材料、仿生材料、納米生物材料、超導(dǎo)體、復(fù)合材料、醫(yī)學(xué)材料、智能材料等方面的研究能力較強(qiáng)。
中國(guó)在納米材料及其應(yīng)用、掃描隧道顯微鏡分析和單原子操縱等方面研究較多,主要以金屬和無(wú)機(jī)非金屬納米材料為主,約占80%,高分子和化學(xué)合成材料也是一個(gè)重要方面,而在納米電子學(xué)、納米器件和納米生物醫(yī)學(xué)研究方面與發(fā)達(dá)國(guó)家有明顯差距。
四、納米技術(shù)產(chǎn)業(yè)化步伐加快
目前,納米技術(shù)產(chǎn)業(yè)化尚處于初期階段,但展示了巨大的商業(yè)前景。據(jù)統(tǒng)計(jì):2004年全球納米技術(shù)的年產(chǎn)值已經(jīng)達(dá)到500億美元,2010年將達(dá)到14400億美元。為此,各納米技術(shù)強(qiáng)國(guó)為了盡快實(shí)現(xiàn)納米技術(shù)的產(chǎn)業(yè)化,都在加緊采取措施,促進(jìn)產(chǎn)業(yè)化進(jìn)程。
美國(guó)國(guó)家科研項(xiàng)目管理部門(mén)的管理者們認(rèn)為,美國(guó)大公司自身的納米技術(shù)基礎(chǔ)研究不足,導(dǎo)致美國(guó)在該領(lǐng)域的開(kāi)發(fā)應(yīng)用缺乏動(dòng)力,因此,嘗試建立一個(gè)由多所大學(xué)與大企業(yè)組成的研究中心,希望借此使納米技術(shù)的基礎(chǔ)研究和應(yīng)用開(kāi)發(fā)緊密結(jié)合在一起。美國(guó)聯(lián)邦政府與加利福尼亞州政府一起斥巨資在洛杉礬地區(qū)建立一個(gè)“納米科技成果轉(zhuǎn)化中心”,以便及時(shí)有效地將納米科技領(lǐng)域的基礎(chǔ)研究成果應(yīng)用于產(chǎn)業(yè)界。該中心的主要工作有兩項(xiàng):一是進(jìn)行納米技術(shù)基礎(chǔ)研究;二是與大企業(yè)合作,使最新基礎(chǔ)研究成果盡快實(shí)現(xiàn)產(chǎn)業(yè)化。其研究領(lǐng)域涉及納米計(jì)算、納米通訊、納米機(jī)械和納米電路等許多方面,其中不少研究成果將被率先應(yīng)用于美國(guó)國(guó)防工業(yè)。
美國(guó)的一些大公司也正在認(rèn)真探索利用納米技術(shù)改進(jìn)其產(chǎn)品和工藝的潛力。IBM、惠普、英特爾等一些IT公司有可能在中期內(nèi)取得突破,并生產(chǎn)出商業(yè)產(chǎn)品。一個(gè)由專(zhuān)業(yè)、商業(yè)和學(xué)術(shù)組織組成的網(wǎng)絡(luò)在迅速擴(kuò)大,其目的是共享信息,促進(jìn)聯(lián)系,加速納米技術(shù)應(yīng)用。
日本企業(yè)界也加強(qiáng)了對(duì)納米技術(shù)的投入。關(guān)西地區(qū)已有近百家企業(yè)與16所大學(xué)及國(guó)立科研機(jī)構(gòu)聯(lián)合,不久前又建立了“關(guān)西納米技術(shù)推進(jìn)會(huì)議”,以大力促進(jìn)本地區(qū)納米技術(shù)的研發(fā)和產(chǎn)業(yè)化進(jìn)程;東麗、三菱、富士通等大公司更是紛紛斥巨資建立納米技術(shù)研究所,試圖將納米技術(shù)融合進(jìn)各自從事的產(chǎn)業(yè)中。
歐盟于2003年建立納米技術(shù)工業(yè)平臺(tái),推動(dòng)納米技術(shù)在歐盟成員國(guó)的應(yīng)用。歐盟委員會(huì)指出:建立納米技術(shù)工業(yè)平臺(tái)的目的是使工程師、材料學(xué)家、醫(yī)療研究人員、生物學(xué)家、物理學(xué)家和化學(xué)家能夠協(xié)同作戰(zhàn),把納米技術(shù)應(yīng)用到信息技術(shù)、化妝品、化學(xué)產(chǎn)品和運(yùn)輸領(lǐng)域,生產(chǎn)出更清潔、更安全、更持久和更“聰明”的產(chǎn)品,同時(shí)減少能源消耗和垃圾。歐盟希望通過(guò)建立納米技術(shù)工業(yè)平臺(tái)和增加納米技術(shù)研究投資使其在納米技術(shù)方面盡快趕上美國(guó)。
納米技術(shù)被譽(yù)為21世紀(jì)的科學(xué),現(xiàn)已成為世界各國(guó)研究的熱點(diǎn)領(lǐng)域。它的迅猛發(fā)展將在世界范圍內(nèi)引發(fā)一場(chǎng)包括生命科學(xué)、信息技術(shù)、生態(tài)環(huán)境技術(shù)、能源技術(shù)在內(nèi)的幾乎覆蓋所有工業(yè)領(lǐng)域的大革命。
從納米技術(shù)的發(fā)展來(lái)看,激光干涉納米光刻技術(shù)、納米加工、納米測(cè)量技術(shù),以及納米制造等,都有著不可忽視的地位和作用。原子力顯微鏡(atomic force microscope,簡(jiǎn)稱(chēng)AFM)是納米技術(shù)研究中最常用也是最基礎(chǔ)的一個(gè)儀器。它是利用微懸臂感受和放大懸臂上探針與受測(cè)樣品原子之間的作用力,從而達(dá)到檢測(cè)的目的,具有原子級(jí)的分辨率[1]。
隨著人們對(duì)納米技術(shù)的深入研究以及對(duì)AFM的不斷開(kāi)發(fā),使原子力顯微鏡不僅僅具有檢測(cè)的功能,還可以實(shí)現(xiàn)對(duì)樣品的“推”、“拉”、“刻劃”、“切割”、“搬運(yùn)”等功能,增大了AFM的使用范圍。其優(yōu)勢(shì)在于操作過(guò)程不受環(huán)境影響,既可以在大氣環(huán)境下工作,也可以在液相下工作。這對(duì)人們?cè)谏镝t(yī)學(xué)等方面的研究工作,帶來(lái)了便利。
對(duì)于納米技術(shù)的基礎(chǔ)教學(xué)而言, AFM是學(xué)生們感知納米量級(jí),實(shí)現(xiàn)簡(jiǎn)單操作的最直接的方式之一。因此,本論文針對(duì)AFM的特點(diǎn)及納米技術(shù)相關(guān)教學(xué)的知識(shí)點(diǎn),將AFM工作原理及實(shí)際掃描、操作后得到的圖片引入到課堂中進(jìn)行輔助教學(xué),取得了一定的效果,提升了學(xué)生們的學(xué)習(xí)興趣。
一、AFM原理
AFM是將一個(gè)對(duì)微弱力極敏感的微懸臂的一端固定住,另一端裝有一微小的納米級(jí)針尖。當(dāng)針尖與樣品表面輕輕接觸,由于針尖尖端原子與樣品表面原子間存在極微弱的排斥力,通過(guò)在掃描時(shí)控制這種力的恒定,帶有針尖的微懸臂將對(duì)應(yīng)于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運(yùn)動(dòng)。利用光學(xué)檢測(cè)法或隧道電流檢測(cè)法,可測(cè)得微懸臂對(duì)應(yīng)于掃描各點(diǎn)的位置變化,從而可以獲得樣品表面形貌的信息[2]。也就是說(shuō),微懸臂的形變是對(duì)樣品-針尖相互作用的直接反映。
AFM研究對(duì)象可以是有機(jī)固體、聚合物以及生物大分子等,其可以在空氣或者液體下對(duì)樣品直接進(jìn)行成像或操作,分辨率很高。因此,AFM被廣泛應(yīng)用于納米測(cè)量及納米加工等技術(shù)中。
二、AFM教學(xué)實(shí)例
針對(duì)納米測(cè)量所涉及的兩個(gè)重要領(lǐng)域:納米長(zhǎng)度測(cè)量和納米級(jí)的表面輪廓測(cè)量。列舉了AFM掃描的利用多光束激光干涉光刻制備單晶硅形貌圖。
觀測(cè)者不但可以直接看到被測(cè)樣品的表面形貌,還可以通過(guò)AFM二維圖像形成相應(yīng)的三維像,從而獲得樣品表面結(jié)構(gòu)的深度,大小以及長(zhǎng)度等重要信息參數(shù),如圖2所示。
針對(duì)納米操作技術(shù)所涉及到的對(duì)樣品的“推”、“拉”及“刻劃”等操作,列舉了相關(guān)原理圖及AFM的掃描圖像。
通過(guò)AFM對(duì)原子的操作及樣品形貌的掃描,可以讓學(xué)生更為直觀地了解AFM以及納米技術(shù)的相關(guān)概念及原理。同時(shí),清晰的掃描圖像可以進(jìn)一步促進(jìn)學(xué)生對(duì)納米技術(shù)相關(guān)教學(xué)課程內(nèi)容的理解和認(rèn)識(shí)。
全世界的首篇納米硒的論文就是中國(guó)科學(xué)家撰寫(xiě)的。1997年納米硒問(wèn)世之后,1998年經(jīng)鑒定申請(qǐng)了國(guó)家專(zhuān)利,1999年第二次鑒定后由四通納米港迅速產(chǎn)業(yè)化,逐步被人們所認(rèn)識(shí)和接受。我去香港講學(xué),就有人問(wèn)我要這個(gè)產(chǎn)品,他們反映臺(tái)灣也在搞這個(gè)項(xiàng)目推廣,而這個(gè)項(xiàng)目是推向?qū)嵱没M(jìn)程最快的一個(gè)項(xiàng)目,也是將源頭創(chuàng)新和市場(chǎng)接軌最好的事物。所以說(shuō),這樣一個(gè)產(chǎn)品理應(yīng)受到政府的重視和支持。
Chinese scientists first reported the properties of nano selenium after obtaining its patent right. Stone Nano Technology Port Ltd. rapidly invested for this novel technology and the product in the form of health food has gained good reputation it warrants. While I was in Hong Kong for academic activity, many people there told me they enjoyed this product, they also said it was popular in Taiwan. The project is innovative, moveing-fast, highly integrated into market. Thus, such a product ought to be paid attention and be supported by government.
納米科技發(fā)展速度之快出乎了大家的預(yù)期,尤其是實(shí)用化技術(shù)的進(jìn)程大大加快。比如,美國(guó)的目標(biāo)是到2010年納米科技的GDP達(dá)到10000億美元,并培養(yǎng)80萬(wàn)人真正懂納米科技。并且納米生物學(xué)會(huì)比美國(guó)上一屆總統(tǒng)克林頓估計(jì)r 20年發(fā)展歷程縮短5年左右。目前美國(guó)有大量實(shí)驗(yàn)室和風(fēng)險(xiǎn)投資正式對(duì)源頭創(chuàng)新進(jìn)行投入,生產(chǎn)方式在納米組合空間得以體現(xiàn),其中美國(guó)硅谷由政府支持建立全球第一條芯片生產(chǎn)線,這條生產(chǎn)線生產(chǎn)的芯片是人的肉眼看不見(jiàn)的、尺度只有100納米、而且計(jì)算速度提高1000倍。此外,在新材料領(lǐng)域及醫(yī)藥領(lǐng)域的納米技術(shù)的應(yīng)用也有很大突破。
現(xiàn)在各國(guó)都致力于納米技術(shù)和納米產(chǎn)業(yè)發(fā)展,美國(guó)的發(fā)展是全面的,而日本主要致力于納米機(jī)器人的發(fā)展,德國(guó)則定位于環(huán)境和能源,英國(guó)定位于醫(yī)藥領(lǐng)域的應(yīng)用,法國(guó)重新建立國(guó)家納米中心??傊{米實(shí)用進(jìn)程加快了,并將成為各國(guó)競(jìng)爭(zhēng)的焦點(diǎn)。
客觀來(lái)說(shuō),中國(guó)的納米科技起步早,在納米科技基礎(chǔ)研究方面與國(guó)際水平相差不大。但我國(guó)要真正將納米技術(shù)轉(zhuǎn)為財(cái)富、使納米為我國(guó)GDP做貢獻(xiàn),還面臨三大問(wèn)題:其一,我國(guó)的納米技術(shù)缺乏實(shí)用化進(jìn)程、缺乏市場(chǎng)目標(biāo)做牽引、缺乏進(jìn)入市場(chǎng)具體規(guī)劃,沒(méi)有適合本國(guó)納米發(fā)展的領(lǐng)域;其二,納米技術(shù)應(yīng)是多學(xué)科交叉的,科學(xué)家應(yīng)該能組織在一起進(jìn)行納米技術(shù)的應(yīng)用,這樣才能迅速集成技術(shù)進(jìn)入市場(chǎng),而我國(guó)是各干各的;其三,我國(guó)前一段時(shí)期市場(chǎng)上出現(xiàn)炒做概念、亂用概念,錯(cuò)誤地低估納米技術(shù),其實(shí)我們要認(rèn)識(shí)到,納米不使性能提高便一錢(qián)不值,不能將性能提高和納米科技內(nèi)涵脫離開(kāi)來(lái)。
那么我國(guó)納米技術(shù)有沒(méi)有領(lǐng)先呢?有。譬如納米硒,是世界上為數(shù)不多的納米技術(shù)的領(lǐng)先產(chǎn)品,在硒的研究方面中國(guó)本身就具有領(lǐng)先水平,全球硒的膳食標(biāo)準(zhǔn)就是中國(guó)參與制訂的,而且硒又是普遍看好的一個(gè)事物,它對(duì)免疫力的提高、維持新陳代謝的平衡及防止癌癥起到了別的元素不可替代的作用。缺碘會(huì)導(dǎo)致大脖子病,缺鈣會(huì)導(dǎo)致骨質(zhì)疏松,缺鐵導(dǎo)致貧血,那么缺硒導(dǎo)致多種疾病的高發(fā)。當(dāng)然微量元素過(guò)量補(bǔ)充也會(huì)有反作用。過(guò)去人們對(duì)硒的副作用看得過(guò)高,其實(shí)這是過(guò)量補(bǔ)充造成的后果。
客觀認(rèn)識(shí)硒的作用,那么目前對(duì)硒的更高要求是什么呢?我認(rèn)為主要納米集成技術(shù)加工后使硒變成人體易于吸收的營(yíng)養(yǎng),避免硒帶來(lái)的副作用。傳統(tǒng)補(bǔ)硒醫(yī)學(xué)上是非常慎重的,因?yàn)橛幸婧亢陀泻Φ牟畹锰?,所以,在醫(yī)院一般是非吃不可、如癌癥放化療患者才能補(bǔ)硒。而納米硒具有低毒、高效的功能。這也是對(duì)納米生物學(xué)一個(gè)相當(dāng)高的要求。
論文摘要:納米尺寸開(kāi)辟科學(xué)新領(lǐng)域,介紹納米材料的神奇特性及在生活中的應(yīng)用。
人類(lèi)對(duì)物質(zhì)世界的研究,曾小到原子、分子,大到宇宙空間。從無(wú)限小和無(wú)限大兩個(gè)物質(zhì)尺寸去認(rèn)識(shí)物質(zhì),使人們了解到世界是物質(zhì)的。物質(zhì)是由原子或分子構(gòu)成的,原子、分子是保持物質(zhì)化學(xué)、物理理特性的最小微粒。這為人類(lèi)認(rèn)識(shí)世界、改造世界推進(jìn)科學(xué)的向前發(fā)展提供了堅(jiān)實(shí)的理論基礎(chǔ),也產(chǎn)生了一個(gè)個(gè)的科學(xué)原理和定理,推動(dòng)了人類(lèi)生產(chǎn)和生活的不斷向前發(fā)展。
隨著科學(xué)研究的進(jìn)一步發(fā)展,人們發(fā)現(xiàn)當(dāng)物質(zhì)達(dá)到納米尺度以后,大約在1~100納米這個(gè)范圍空間。物質(zhì)的性能就會(huì)發(fā)生突變,出現(xiàn)特殊性能。這種既不同于原來(lái)組成的原子、分子,也不同于宏觀物質(zhì)的特殊性能的物質(zhì)構(gòu)成的材料,即為納米材料。
過(guò)去,人們只注意原子、分子,或者宇宙空間,常常忽略他們的中間領(lǐng)域,而這個(gè)領(lǐng)域?qū)嶋H上大量存在于自然界,只是以前沒(méi)有認(rèn)識(shí)到這個(gè)尺度的范圍的性能。第一個(gè)真正認(rèn)識(shí)到它的性能并引用納米概念的是日本科學(xué)家。他們發(fā)現(xiàn):一個(gè)導(dǎo)電,導(dǎo)熱的銅、銀導(dǎo)體做成納米尺度以后,它就失去原來(lái)的性質(zhì),表現(xiàn)出既不導(dǎo)電,也不導(dǎo)熱。材料在尺寸上達(dá)到納米尺度,大約是在1~100納米這個(gè)范圍空間,就會(huì)產(chǎn)生特殊的表面效應(yīng),體積效應(yīng),量子尺寸效應(yīng),量子隧道效應(yīng)等及由這些效應(yīng)所引起的諸多奇特性能。擁有一系列的新穎的物理和化學(xué)特性,這些特性在光、電、磁、催化等方面具有非常重大應(yīng)用價(jià)值。
近年來(lái),已在醫(yī)藥、生物、環(huán)境保護(hù)和化工等方面得到了應(yīng)用,并顯示出它的獨(dú)特魅力。
1醫(yī)學(xué)方面的應(yīng)用:
目前,國(guó)際醫(yī)學(xué)行業(yè)面臨新的決策,那就是用納米尺度發(fā)展制藥業(yè)。納米生物醫(yī)學(xué)就是從動(dòng)植物中提取必要的物質(zhì),然后在納米尺度組合,最大限度發(fā)揮藥效,這恰恰是我國(guó)中醫(yī)的想法,隨著健康科學(xué)的發(fā)展,人們對(duì)藥物的要求越來(lái)越高??刂扑幬镝尫艤p少副作用,提高藥效,發(fā)展藥物定向治療,必須憑借納米技術(shù)。納米粒子可使藥物在人體內(nèi)方便傳輸。用數(shù)層納米粒子包裹的智能藥物進(jìn)入人體,可主動(dòng)搜索并攻擊癌細(xì)胞或修補(bǔ)損傷組織,尤其是以納米磁性材料作為藥物載體的靶定向藥物,稱(chēng)為"定向?qū)?。該技術(shù)是在磁性納米微粒包覆蛋白質(zhì)表面攜帶藥物,注射到人體血管中,通過(guò)磁場(chǎng)導(dǎo)航輸送到病變部位,然后釋放藥物。納米粒子的尺寸小,可以在血管中自由的滾動(dòng),因此可以用檢查和治療身體各部位的病變。利用納米系統(tǒng)檢查和給藥,避免身體健康部位受損,可以大大減小藥物的毒副作用,因而深受人們的歡迎。
2在涂料方面的應(yīng)用;
納米材料由于其表面和結(jié)構(gòu)的特殊性,具有一般材料難以獲得的優(yōu)異性能。借助于傳統(tǒng)的涂層技術(shù),再給涂料中添加納米材料,可獲得納米復(fù)合體系涂層,實(shí)現(xiàn)功能的飛躍,使得傳統(tǒng)涂層功能改性從而獲得傳統(tǒng)涂層沒(méi)有的功能,如;有超硬、耐磨,抗氧化、耐熱、阻燃、耐腐蝕、變色等。在涂料中加入納米材料,可進(jìn)一步提高其防護(hù)能力,實(shí)現(xiàn)防紫外線照射,耐大氣侵害和抗降解等,在衛(wèi)生用品上應(yīng)用可起到殺菌保結(jié)作用。在建材產(chǎn)品如玻璃中加入適宜的納米材料,可達(dá)到減少光的透射和熱估遞效果,產(chǎn)生隔熱,阻燃等效果。由于氧化物納米微粒的顏色不同,這樣可以通過(guò)復(fù)合控制涂料的顏色,克服碳黑靜電屏蔽涂料只有單一顏色的單調(diào)性。納米材料的顏色不僅限粒徑而變,而具有隨角度變色的效應(yīng)。在汽車(chē)的裝飾噴涂業(yè)中,將納米Tio2添加在汽車(chē)、轎車(chē)的金屬閃光面漆中,能使涂層產(chǎn)生豐富而神秘的色彩效果,從而使傳統(tǒng)汽車(chē)面色彩多樣化。
3在化工方面的應(yīng)用;
化工業(yè)影響到人類(lèi)生活的方方面面,如果在化工業(yè)中采用納米技術(shù),將更顯示出獨(dú)特畦力。在橡膠塑料等化工領(lǐng)域,納米材料都能發(fā)揮重要作用。如在橡膠中加入納米Sio2,可以提高橡膠的抗紫外輻射和紅外反射能力。納米Al2O3和SiO2,加入到普通橡膠中,可以提高橡膠的耐磨性和介電特性,而且彈性也明顯優(yōu)于用白炭黑作填料的橡膠。塑料中添加一定的納米材料,可以提高塑料的強(qiáng)度和韌性,而且致密性和防水性也相應(yīng)提高。最近又開(kāi)發(fā)了食品包裝的TiO2.納米TiO2能夠強(qiáng)烈吸收太陽(yáng)光中的紫外線,產(chǎn)生很強(qiáng)的光化學(xué)活性,可以用光催化降解工業(yè)廢水中的有利污染物,具有除凈度高,無(wú)二次污染,適用性廣泛等優(yōu)點(diǎn),在環(huán)保水處理中有著很好的應(yīng)用前景。新晨
4其他生活方面的應(yīng)用:
納米技術(shù)正在悄悄地滲透到老百姓衣、食、住、行各個(gè)領(lǐng)域。化纖布料制成的衣服雖然艷麗,但因摩擦容易產(chǎn)生靜電,因而在生產(chǎn)時(shí)加入少量金屬納米微粒,就可以擺脫煩人的靜電現(xiàn)象。不久前,關(guān)于保溫被、保溫衣的電視宣傳,提到應(yīng)用了納米技術(shù)。納米材料可使衣物防靜電、變色、貯光,具有很好的保暖效果。冰箱、洗衣機(jī)等一些電器時(shí)間長(zhǎng)了容易產(chǎn)生細(xì)菌,而采用了納米材料,新設(shè)計(jì)的冰箱、洗衣機(jī)既可以抗菌,又可以除味殺菌。紫外線對(duì)人體的害處極大,有的納米微粒卻可以吸收紫外線對(duì)人體有害的部分,市場(chǎng)上的許多化妝品正是因?yàn)榧尤肓思{米微粒而具備了防紫外線的功能。傳統(tǒng)的涂料耐洗刷性差,時(shí)間不長(zhǎng)墻壁就會(huì)變的班駁陸離,納米技術(shù)應(yīng)用之后,涂料的技術(shù)指標(biāo)大大提高,外墻涂料的耐洗刷性提高很多,以前的電視、音響等家電外表一般都是黑色的,被稱(chēng)為黑色家電,這是因?yàn)榧译娡獗聿牧现斜仨毤尤胩己谶M(jìn)行靜電屏蔽。如今可以通過(guò)控制納米微粒的種類(lèi),進(jìn)而可控制涂料的顏色,使黑色家電變成彩色家電。
總之,在未來(lái)生活中,納米技術(shù)將帶給我們無(wú)限的舒心與時(shí)尚,使人類(lèi)的生存的條件更加優(yōu)越。
參考文獻(xiàn)
[1]趙清榮:雷達(dá)與對(duì)抗[J],2001,(3):20-23。
[2]秦嶸等。宇航材料工藝[J],1997,(4):17-20。
關(guān)鍵詞:陶瓷刀具 發(fā)展
中圖分類(lèi)號(hào):TG711 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2011)09(a)-0246-01
幾十年來(lái),雖然由于新型刀具材料的出現(xiàn),使切削速度和切削加工生產(chǎn)率成倍增加,然而,隨著航空航天工業(yè)、動(dòng)力工業(yè)、超高溫、超高壓技術(shù)等的發(fā)展,黑色金屬及難加工材料(包括鐵基、鎳基、鉆基、欽基高溫合金、高硬度鋼、鑄鐵及其合金、模具鋼、耐熱合金、欽合金等)的高速切削加工技術(shù)和刀具材料研究越來(lái)越迫切,同時(shí),制造技術(shù)向高精度、高柔性和強(qiáng)化環(huán)境意識(shí)的方向發(fā)展,在這種情況下,高速切削已成為切削加工的主流,一般高于常規(guī)切削速度5一10倍。而高速切削的發(fā)展主要取決于高速切削刀具和高速切削機(jī)床的發(fā)展,其中,高速切削刀具材料起決定性作用[5]。
由于陶瓷刀具在1200一1450℃高溫下尚能進(jìn)行切削,并且可在切削速度500一1000m/min下進(jìn)行工作,陶瓷刀具的研制成為刀具材料研究的熱點(diǎn)。并且隨著燒結(jié)理論的深入研究,各種氧化物、碳化物及氮化物等粉末制備技術(shù)的不斷改進(jìn),多種陶瓷燒結(jié)及加工設(shè)備和工藝的不斷開(kāi)發(fā)研制,使得陶瓷材料成為高速切削、干切削刀具的理想材料,幾乎可以加工包括多種難加工材料在內(nèi)的所有黑色和有色金屬[5]。
陶瓷材料作為三大材料之一,隨著社會(huì)的發(fā)展被分成了兩大類(lèi):普通陶瓷和特種陶瓷。普通陶瓷按其用途分為日用瓷、建筑瓷、電瓷和化工瓷;特種陶瓷又可分為結(jié)構(gòu)陶瓷和功能陶瓷兩大類(lèi)。結(jié)構(gòu)陶瓷強(qiáng)調(diào)材料的力學(xué)性能或機(jī)械性能;而將具有電、磁、聲、光、熱、化學(xué)及生物體特性,且具有相互轉(zhuǎn)化功能的陶瓷定義為功能陶瓷[2]。陶瓷刀具是現(xiàn)代結(jié)構(gòu)陶瓷在加工材料中的一個(gè)重要應(yīng)用領(lǐng)域。陶瓷刀具是含有金屬氧化物的無(wú)機(jī)非金屬材料,具有高硬度、高強(qiáng)度、摩擦因數(shù)低、優(yōu)異的耐熱性、耐磨性(耐磨性為硬質(zhì)合金的3~5倍)和化學(xué)穩(wěn)定性等優(yōu)異性能,能夠在其他材料無(wú)法承受的惡劣環(huán)境條件下正常工作,它已成為高速切削刀具材料的首選[4]。
陶瓷刀具材料的出現(xiàn)也有半個(gè)多世紀(jì)歷史,從1913年陶瓷材料最早試作切削刀具開(kāi)始,陶瓷刀具材料的發(fā)展,在20世紀(jì)經(jīng)歷了以下幾個(gè)階段:50年代后期以氧化鋁陶瓷為主,現(xiàn)氧化鋁系陶瓷刀具材料是目前所有陶瓷刀具中應(yīng)用最廣泛,年消耗量最大的陶瓷刀具材料[5]。由于Al2O3系陶瓷刀具化學(xué)穩(wěn)定性好、耐熱、耐磨性能優(yōu)異且價(jià)格低廉,所以目前所占比例很大;60一70年代以Al2O3/TiC陶瓷為主,70年代后期至80年代初期發(fā)展了Si3N4系陶瓷刀具及相變?cè)鲰g陶瓷刀具材料,80年代后期至90年代在晶須增韌陶瓷刀具材料得到長(zhǎng)足發(fā)展的同時(shí),各種復(fù)相陶瓷刀具材料的研究也倍受重視。目前國(guó)內(nèi)外應(yīng)用最為廣泛的是氧化鋁系和氮化硅系陶瓷刀具材料。20世紀(jì)70年入使用的Al2O3/TiC熱壓陶瓷材料,強(qiáng)度、硬度和韌性均較高,仍是國(guó)內(nèi)外使用最多的陶瓷刀具材料之一。此后在Al2O3中添加TiB2、Ti(C,N)、SiCW、ZrO2等陶瓷刀具也相繼研制成功,其力學(xué)性能進(jìn)一步提高,廣泛應(yīng)用于碳鋼、合金鋼或鑄鐵的精加工或半精加工[6]。
目前陶瓷刀具的研制己建立起融合切削學(xué)和陶瓷學(xué)為一體的、基于切削可靠性的陶瓷刀具材料設(shè)計(jì)研究理論體系[5]?,F(xiàn)代陶瓷刀具材料多為復(fù)相陶瓷,根據(jù)材料不同的使用環(huán)境,以一定的設(shè)計(jì)理論為基礎(chǔ),采用各種超細(xì)的氧化物、碳化物、氮化物和硼化物等為基本組分,并依據(jù)不同的增韌補(bǔ)強(qiáng)機(jī)理進(jìn)行微觀結(jié)構(gòu)設(shè)計(jì),可以制備出具有良好綜合性能的復(fù)相陶瓷。
陶瓷材料本征脆性,大多抗拉強(qiáng)度低、韌性差,因此陶瓷材料的強(qiáng)韌化是拓展其應(yīng)用的關(guān)鍵。最近的研究表明,梯度功能材料(FunetionalGradientMaterial簡(jiǎn)稱(chēng)FGM)、表面改性陶瓷、納米復(fù)合陶瓷刀具材料將在今后得到較大的發(fā)展[3]。
其中,納米技術(shù)(Nano一ST)是于上世紀(jì)80年代迅速形成和發(fā)展起來(lái)的一門(mén)基礎(chǔ)研究和應(yīng)用開(kāi)發(fā)緊密聯(lián)系的高新技術(shù),它在納米尺度上研究物質(zhì)(包括分子、原子)的內(nèi)在相互作用和特性,它所涉及的領(lǐng)域是人類(lèi)過(guò)去很少涉及的非宏觀、非微觀的中間領(lǐng)域,英國(guó)著名材料專(zhuān)家.RW.Cahn在《自然》雜志上撰文說(shuō):“納米陶瓷是解決陶瓷脆性的戰(zhàn)略途徑”[5]。經(jīng)過(guò)納米改性的材料可提高強(qiáng)度、增加韌性、降低燒結(jié)溫度。目前使用納米技術(shù)制備的陶瓷刀具材料主要有兩種:納米復(fù)合陶瓷刀具材料和納米涂層陶瓷刀具材料。
納米復(fù)合結(jié)構(gòu)陶瓷的概念是由K.Niliiara于1991年提出的,可看作是對(duì)復(fù)構(gòu)陶瓷微觀結(jié)構(gòu)設(shè)計(jì)的應(yīng)用。納米復(fù)合材料是納米材料的重要應(yīng)用,它由兩相或多相構(gòu)成,其中至少有一相為納米級(jí)尺寸。將納米顆粒、晶須及纖維彌散到陶瓷基體中,制備成的納米復(fù)合材料具有優(yōu)異的性能。切削性能實(shí)驗(yàn)表明,納米復(fù)合陶瓷刀具的耐磨性能遠(yuǎn)高于同組分的微米級(jí)的陶瓷刀具,且斷續(xù)切削的能力也有了明顯增強(qiáng)[2]。
納米技術(shù)的出現(xiàn)為陶瓷材料的改性和增強(qiáng)提供了條件,納米技術(shù)在現(xiàn)代陶瓷的應(yīng)用方面將帶來(lái)革命性的變化。將納米顆粒增韌、纖維(纖維)增韌、相變?cè)鲰g等手段相結(jié)合,在保持高硬度、高耐磨性和紅硬性的基礎(chǔ)上,研制出高強(qiáng)度、高韌性、智能化、經(jīng)濟(jì)環(huán)保、具有更好的耐高溫性能、耐磨損性能和抗崩刃性能,滿足高速精密切削加工的要求的高性能復(fù)合陶瓷材料,將是廿一世紀(jì)陶瓷材料學(xué)的發(fā)展方向[1]。
通過(guò)對(duì)近幾年發(fā)表的關(guān)于陶瓷刀具切削性能研究的文獻(xiàn),了解了刀具材料的發(fā)展歷程、陶瓷刀具材料的主要種類(lèi)和特點(diǎn),筆者認(rèn)為陶瓷刀具類(lèi)型的開(kāi)發(fā)必將是高精度、高柔性和強(qiáng)化環(huán)境意識(shí)的現(xiàn)代制造技術(shù)的不二選擇。
參考文獻(xiàn)
[1] 徐立強(qiáng).新型Ti_C_N_基金屬陶瓷刀具材料的研制及切削性能研究.山東大學(xué)碩士學(xué)位論文.2005.
[2] 丁代存.Si_3N_4_TiC納米復(fù)合陶瓷刀具材料的研制與性能研究.山東大學(xué)碩士學(xué)位論文.2005.
[3] Krestic V D.Fracture of brittle solids in the presence of ther-moelastic stresses.J Am Ceram Soc.1984,67(9):589~593.
[4] 宋新玉,趙軍,姜俊玲.加工Inconel718時(shí)陶瓷刀具的磨損機(jī)理.中國(guó)機(jī)械工程.2009,4:763-768.
隨著納米技術(shù)在醫(yī)學(xué)領(lǐng)域中的深入研究,臨床診斷技術(shù)及治療水平也得以提高。本文就納米技術(shù)、納米技術(shù)在腫瘤治療中的應(yīng)用、用于腫瘤治療的納米粒子作一簡(jiǎn)要闡述,并提出相關(guān)建議和期望。
關(guān)鍵詞:
納米技術(shù);腫瘤診斷;腫瘤治療
目前,腫瘤已經(jīng)嚴(yán)重地威脅著人類(lèi)的健康,如何提高腫瘤診斷的準(zhǔn)確性和治療的靶向性一直都是臨床研究的重點(diǎn),納米技術(shù)是指在納米尺寸(1~100nm)內(nèi),研究電子、原子和分子的運(yùn)動(dòng)規(guī)律和特性的一種高新技術(shù),該技術(shù)在醫(yī)學(xué)領(lǐng)域有著廣闊的應(yīng)用和發(fā)展前景,本文就納米技術(shù)在腫瘤的診斷和治療中的應(yīng)用做一簡(jiǎn)要闡述。
1納米診斷技術(shù)在腫瘤中的應(yīng)用
當(dāng)前,臨床上針對(duì)腫瘤的多種診斷手段都存在準(zhǔn)確性和靈敏度低的問(wèn)題,納米技術(shù)的出現(xiàn)可大大改善這一局面。
1.1細(xì)胞分離技術(shù)
一直以來(lái),從大量外周血中篩選出極少量的腫瘤細(xì)胞是一項(xiàng)難題,納米細(xì)胞分離技術(shù)尤其是免疫磁性分離技術(shù)的出現(xiàn)有助于快速獲取細(xì)胞標(biāo)本,使其成為可能。目前,Wang等[1]發(fā)現(xiàn)基于該技術(shù)產(chǎn)生的循環(huán)腫瘤細(xì)胞(circulatingtumorcells,CTCs)檢測(cè)表明,在乳腺癌等領(lǐng)域,腫瘤患者的預(yù)后與其外周血中的CTCs計(jì)數(shù)有著明顯的相關(guān)性,甚至在化療過(guò)程中,可以反映患者對(duì)當(dāng)前化療方案是否敏感,有一定的輔助治療作用。
1.2納米造影劑
將無(wú)機(jī)納米粒子用作新型的生物造影材料,不僅可以提供較好的檢測(cè)信號(hào)對(duì)比度和生物分布度,并有望將現(xiàn)有解剖學(xué)層面的造影技術(shù)推向分子水平從而提高診斷效率。Chen等[2]研究表明包裹金納米棒-液態(tài)氟碳的納米級(jí)造影劑,實(shí)現(xiàn)了體外超聲/光聲雙模態(tài)增強(qiáng)顯影。另有研究表明多功能納米造影劑Fa-PEI-SPIO可高效負(fù)載MRI和熒光造影劑實(shí)現(xiàn)對(duì)肝癌細(xì)胞的高效率敏感顯像,并同時(shí)實(shí)現(xiàn)目的基因的傳輸[3,4]。
1.3納米傳感器
納米傳感器可獲取活細(xì)胞內(nèi)多種電、化學(xué)反應(yīng)的動(dòng)態(tài)信息,用于監(jiān)測(cè)腫瘤細(xì)胞中的異常情況,對(duì)認(rèn)識(shí)腫瘤的發(fā)生及指導(dǎo)腫瘤的診斷與治療都有著深遠(yuǎn)的意義。Wang等[5]已開(kāi)發(fā)出一種含有嵌入金納米顆粒的碳基傳感器的裝置Nano-nose,分析了呼吸氣體成分,確定肺癌患者存在的氣體成分。
2納米技術(shù)在腫瘤治療中的應(yīng)用
化療作為腫瘤治療的重要手段,存在毒副作用大的問(wèn)題,納米技術(shù)的引入能夠提高化療的靶向性,為腫瘤的治療提供了新的思路。
2.1納米靶向載體系統(tǒng)在腫瘤治療中的應(yīng)用
納米藥物載體即溶解或分散有藥物的各種納米顆粒,如納米囊、納米球、納米脂質(zhì)體等。納米靶向載體因其表面經(jīng)過(guò)生物或理化修飾后具有靶向作用,可以作為良好的腫瘤藥物與基因載體,具有比表面積大、無(wú)免疫原性、在血液中有較長(zhǎng)的循環(huán)時(shí)間等特點(diǎn),大大降低了藥物對(duì)機(jī)體的毒副作用。Yao等[6]以PVP-β環(huán)糊精作為親水嵌段,金剛烷—聚天冬氨酸為疏水嵌段構(gòu)建了嵌段聚合物,其自組裝形成的納米粒尾靜脈注1h后就能到達(dá)腫瘤部位,表現(xiàn)出明顯的腫瘤靶向性。Gao等[7]將細(xì)菌膜包覆到30nm左右的金納米粒表面(BM-AuNP)用于淋巴結(jié)靶向。
2.2納米中藥在腫瘤治療中的應(yīng)用
納米中藥是運(yùn)用納米技術(shù)制造的粒徑小于100nm的中藥有效成分、原藥及其復(fù)方制劑。同傳統(tǒng)中藥相比,納米中藥對(duì)一些腫瘤細(xì)胞株和動(dòng)物腫瘤甚至人體晚期癌腫均顯示了良好的抑制效應(yīng)。Huang等[8]成功制備了粒徑為97.5nm的冬凌草三嵌段共聚物納米膠束,并與冬凌草甲素進(jìn)行了對(duì)比研究,結(jié)果表明冬凌草三嵌段共聚物納米膠束對(duì)小鼠H22瘤體的抑制率明顯高于傳統(tǒng)的冬凌草甲素。
2.3磁控納米載藥系統(tǒng)在腫瘤治療中的應(yīng)用
多項(xiàng)研究表明磁控納米載藥系統(tǒng)在腫瘤的治療中能夠達(dá)到很好的靶向效果,具有很大的應(yīng)用前景。
2.3.1磁控納米載藥系統(tǒng)
磁控納米載藥系統(tǒng)具有磁特性,在外加磁場(chǎng)的作用下,抗腫瘤藥物能及時(shí)、定點(diǎn)、定向地聚集到病灶處,既能最大程度的濃集效應(yīng)分子,又能使體內(nèi)磁性微粒在治療結(jié)束后得以徹底有效的清除,以減少其在體內(nèi)慢性蓄積的毒性作用。Assa等[9]的研究表明,磁性納米藥物運(yùn)載系統(tǒng)在腫瘤的治療中具有極大的應(yīng)用潛力。
2.3.2磁性納米材料對(duì)腫瘤的熱療作用
磁熱療即應(yīng)用直接或靜脈注射的方法將產(chǎn)熱材料定向匯聚于腫瘤部位,在交變磁場(chǎng)的作用下產(chǎn)生磁熱效應(yīng),將腫瘤組織加熱至42~48℃高溫,以使腫瘤細(xì)胞死亡的新技術(shù)。Beik等[10]將磁性陽(yáng)離子脂質(zhì)體注射到MM46小鼠乳腺癌中,利用交變磁場(chǎng)使腫瘤表面溫度達(dá)到45℃,經(jīng)過(guò)幾次重復(fù)磁熱療,所有小鼠的腫瘤均完全退化。該技術(shù)如可同時(shí)利用受體—配體特異性結(jié)合的特性,將磁粒子準(zhǔn)確輸送到腫瘤組織,將能達(dá)到靶向熱療的目的。
2.3.3磁性納米微球?qū)δ[瘤血管的磁控栓塞作用
磁性納米微球因具有體積微小、磁控導(dǎo)向等特點(diǎn),能夠在外加磁場(chǎng)的作用下進(jìn)入并滯留在腫瘤組織的末梢血管床,部分或完全地阻斷血管內(nèi)的血流?;菪褫x等[11]用自制的聚甲基丙烯酸甲醋磁性微球?qū)ρ軆?nèi)栓塞進(jìn)行了探討實(shí)驗(yàn)表明,PMMA磁性微球具有磁響應(yīng)能力強(qiáng)、磁控栓塞效果好,在高血流速情況下仍能實(shí)現(xiàn)靶位栓塞等優(yōu)點(diǎn)。
2.4納米控釋系統(tǒng)在腫瘤治療中的應(yīng)用
納米控釋系統(tǒng)在腫瘤藥物輸送方面的優(yōu)越性得益于其可緩釋藥物、減少給藥劑量、提高藥物的穩(wěn)定性等特性。Zhang等[12]利用對(duì)酸性敏感的腙鍵將抗癌藥物阿霉素共價(jià)鍵連在介孔二氧化硅的表面,同樣可以實(shí)現(xiàn)pH敏感的抗癌藥物阿霉素的釋放,從而有效地抑制人宮頸癌細(xì)胞的增殖。
3用于腫瘤治療的納米粒子
為提高腫瘤的療效,在傳統(tǒng)材料的基礎(chǔ)上開(kāi)發(fā)出生物相容性及可降解性好、緩控釋速度適中、靶向性強(qiáng)的納米制劑成為研究的重中之重。
3.1可生物降解的天然高分子聚合物
3.1.1多糖類(lèi)
3.1.1.1殼聚糖
殼聚糖是一類(lèi)無(wú)毒且具有良好生物相容性、可塑性和成膜性的聚多糖,被用作靶向給藥載體而降低藥物的毒副作用。Abouelmagd等[13]將低相對(duì)分子質(zhì)量(低于6500)的殼聚糖通過(guò)多巴胺聚合的方法連接到聚乳酸—羥基乙酸共聚物(PLGA)上,減少了巨噬細(xì)胞的吞噬,增加了酸性環(huán)境下細(xì)胞對(duì)藥物的攝取。
3.1.1.2海藻酸鈉
海藻酸鈉具有無(wú)毒及可生物降解等優(yōu)點(diǎn)。Guo等[14]制備了一種以甘草次酸為肝靶向因子的海藻酸鈉pH響應(yīng)型靶向納米給藥系統(tǒng),研究表明,該納米粒的生物利用度和半衰期及其對(duì)腫瘤細(xì)胞的抑制率均有顯著提高。
3.1.1.3透明質(zhì)酸
透明質(zhì)酸(Hyaluronicacid,HA)又名玻尿酸,除具有良好的生物相容性、可降解性及非免疫原性等特點(diǎn)外還具有主動(dòng)靶向到CD44受體的作用,因此可作為靶向因子用于修飾其它載體材料,促進(jìn)其對(duì)腫瘤組織的靶向性[15]。
3.1.2蛋白類(lèi)
3.1.2.1白蛋白
白蛋白受體(gp60、gp30、gp18等)廣泛存在于腫瘤組織內(nèi)新生血管內(nèi)皮的細(xì)胞膜上,故白蛋白可作為構(gòu)建藥物載體的優(yōu)良材料。Ru-go等[16]將454例乳腺癌患者隨機(jī)分為白蛋白結(jié)合型紫杉醇(nab-PTX)組和紫杉醇注射劑(CrE-PTX)組,結(jié)果顯示,nab-PTX組緩解率顯著高于CrE-PTX組(33%vs.19%),并且nab-PTX治療組無(wú)過(guò)敏反應(yīng)出現(xiàn),提示nab-PTX治療乳腺癌的安全性和有效性優(yōu)于CrE-PTX。
3.1.2.2酪蛋白
酪蛋白毒性較低且有較高的生物相容性,是理想的藥物載體。有研究人員在合成的酪蛋白納米粒子中負(fù)載了順鉑,通過(guò)近紫外活體成像技術(shù)觀察到該粒子能夠在腫瘤部位有效地富集,顯示出了較好的腫瘤靶向作用[17]。
3.1.2.3脂蛋白
脂蛋白是一種大量存在于人體的天然脂質(zhì)運(yùn)輸載體,作為載體材料能夠延長(zhǎng)藥物在體內(nèi)的循環(huán)時(shí)間。Ding等[18]將載脂蛋白apoA-I和穿膜肽(CPP)插入到脂質(zhì)納米粒表面構(gòu)建了一個(gè)雙功能的仿生HDL用于藤黃酸的遞送,提高了對(duì)腫瘤組織的靶向性。然而由于脂蛋白均來(lái)源于血漿,既難以大規(guī)模生產(chǎn),又在生物安全性方面也受到質(zhì)疑,因此Simonsen等[19]開(kāi)發(fā)出了新型的仿HDL納米載體顆粒(HPPS)。
3.1.2.4乳鐵蛋白
Zhang等[20]制備了藤黃酸—乳鐵蛋白納米粒,用于提高藥物的口服吸收和抗腫瘤活性,同時(shí)降低藥物的毒副作用。此外,利用乳鐵蛋白受體存在于腦毛細(xì)血管內(nèi)皮細(xì)胞上的依據(jù),可對(duì)腦部腫瘤發(fā)揮治療作用。
3.2可生物降解的合成高分子聚合物材料
聚乳酸(PLA)、聚乳酸聚乙醇酸共聚物(PLGA)、聚羥基乙酸(PGA)是乳聚酯類(lèi)高分子材料,現(xiàn)已成為藥劑學(xué)領(lǐng)域研究最多的載體材料之一。Kwak等[21]將紫衫醇負(fù)載在PEG-PLA納米粒上,同時(shí)采用MT1-AF7p修飾納米粒,實(shí)現(xiàn)了對(duì)膠質(zhì)瘤細(xì)胞的靶向治療作用。當(dāng)前對(duì)共聚物的研究也較為常見(jiàn),如聚乳酸/聚乙醇酸-聚乙二醇共聚物(PLA/PLGA-b-PEG)等[22]。
3.3不可生物降解的靶向納米材料
3.3.1碳納米管
碳納米管是由層狀結(jié)構(gòu)的石墨片卷曲而成,因其獨(dú)特的中空結(jié)構(gòu)和納米管徑可作為遞藥載體。Sajid等[23]用生物大分子對(duì)碳納米管進(jìn)行了非共價(jià)修飾,除提高其對(duì)腫瘤的親和力外還避免了網(wǎng)狀內(nèi)皮系統(tǒng)對(duì)它的迅速清除,降低對(duì)正常細(xì)胞的毒副作用。
3.3.2納米石墨烯及其衍生物
近幾年在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用研究方面石墨烯及其衍生物——氧化石墨烯(grapheneoxide,GO)發(fā)展迅速。GO含有大量的羧基、羥基和環(huán)氧基團(tuán),這些含氧活性基團(tuán)的引入不僅使其擁有較好的穩(wěn)定性和水溶性,而且可使其更易于被修飾而具有了功能化作用,其中,作為藥物載體就是其重要的功能之一。Chen等[24]報(bào)道了一種新穎的藥物靶向遞送系統(tǒng),即通過(guò)原位還原法將銀納米粒負(fù)載于GO上,再載藥,制得的遞藥系統(tǒng)可通過(guò)表面增強(qiáng)拉曼散射(SERS)—熒光結(jié)合光譜檢測(cè),觀察到其中藥物的胞內(nèi)釋放行為,故能用于癌細(xì)胞內(nèi)的藥物輸送和成像。
3.3.3金納米粒
金納米粒(goldnanoparticles,GNPs)是一種新型的載體材料,鑒于其表面單層被修飾后可與多種藥物結(jié)合的特點(diǎn)而受到了廣泛的關(guān)注。Favi等[25]通過(guò)巰基聚乙二醇與紫杉醇共價(jià)連接之后再與金納米粒子偶聯(lián),制備了PTX-PEG-GNP共聚物,該共聚物不僅提高了藥物的穩(wěn)定性,也增加了藥物在腫瘤細(xì)胞內(nèi)的聚集和腫瘤殺傷效果。
3.3.4介孔二氧化硅
介孔二氧化硅因其不同的孔徑可以直接包埋藥物,還可與其他載體材料合用,連接適當(dāng)?shù)陌邢蛞蜃又瞥砂邢蚣{米載體以發(fā)揮快速殺傷這些腫瘤細(xì)胞的作用。Wang等[26]首先制備了Fe3O4@SiO2核—?dú)ぜ{米粒,并進(jìn)一步合成Fe3O4@MgSiO3磁性介孔納米復(fù)合材料,并將之用于在體靶向研究和抗腫瘤體外體內(nèi)研究,結(jié)果顯示,人肝母細(xì)胞瘤耐藥細(xì)胞Hep-G2/MDR細(xì)胞對(duì)復(fù)合材料多柔比星攝取較游離多柔比星溶液有5倍的增幅。
3.3.5磁性納米靶向載體材料
磁小體作為載體材料,其膜上存在大量的活基團(tuán),可通過(guò)氨基、羧基、巰基以及分子架橋的方式偶聯(lián)藥物。Deng等[27]將抗腫瘤藥物阿糖胞苷成功負(fù)載于磁小體表面,所得的納米粒徑在(72.7±6.0)nm,其不僅具有長(zhǎng)循環(huán)作用,還能改善阿糖胞苷的釋藥行為,解決了藥物的突釋現(xiàn)象。
4存在的問(wèn)題及展望
綜上所述,納米技術(shù)在腫瘤的治療方面展現(xiàn)出了巨大的潛力,納米顆粒的發(fā)展為現(xiàn)代醫(yī)學(xué)進(jìn)步帶來(lái)了許多可能性。但是,本研究認(rèn)為關(guān)于納米技術(shù)的研究尚存在一些問(wèn)題:①研究?jī)?nèi)容多聚焦在體外研究;②趨向于評(píng)價(jià)急性毒性和死亡率,評(píng)價(jià)慢性毒副作用及致病率的研究很少[28]。此外,對(duì)于納米技術(shù)應(yīng)用于腫瘤的治療,本研究有以下設(shè)想:①采取多學(xué)科聯(lián)合攻關(guān),將更多效果更好的納米中藥應(yīng)用于腫瘤的治療。②有針對(duì)性地將不同類(lèi)型的高分子材料組合起來(lái),取長(zhǎng)補(bǔ)短,使所得的復(fù)合材料具有更多功能將會(huì)是研究靶向給藥制劑的重點(diǎn)。③納米粒子在腫瘤個(gè)體化治療上應(yīng)具有廣闊的發(fā)展前景。
參考文獻(xiàn):
[1]惠旭輝,高立達(dá),何能前.聚甲基丙烯酸甲醋磁性微球血管內(nèi)栓塞實(shí)驗(yàn)研究[J].四川醫(yī)學(xué),2001,22(10):928-929.
關(guān)健詞:耐火材料;鎂碳材料;含碳量;納米技術(shù);分散性
1 耐火材料的工程應(yīng)用
耐火材料具有一定的高溫力學(xué)性能、良好的體積穩(wěn)定性以及熱穩(wěn)定性,是各種高溫設(shè)備必需的材料,其耐火溫度一般在1580℃以上,包含天然礦石及各種人工制品。耐火材料按其化學(xué)成分可分為酸性、堿性和中性;按耐火度可分為普通耐火材料(1580 ~ 1770℃)、高級(jí)耐火材料(1770 ~ 2000℃)、特級(jí)耐火材料(2000℃以上)和超級(jí)耐火材料(大于3000℃)四大類(lèi);按礦物組成可分為硅酸鋁質(zhì)(粘土磚、高X磚、半硅磚)、硅質(zhì)(硅磚、熔融石英燒制品)、鎂質(zhì)(鎂磚、鎂鋁磚、鎂鉻磚)、碳質(zhì)(碳磚、石墨磚)、白云石質(zhì)、鋯英石質(zhì)等。隨著當(dāng)今高溫工業(yè)的飛速進(jìn)步,耐火材料正日益成為其不可或缺的支撐材料,并廣泛應(yīng)用于建材、電力、水泥、鋼鐵及軍工等國(guó)民經(jīng)濟(jì)的各個(gè)領(lǐng)域。
上世紀(jì)70年代初,隨著鋼鐵鑄造技術(shù)的發(fā)展,傳統(tǒng)氧化物基耐火材料逐步顯示出其落后性,研究者們開(kāi)始嘗試將石墨引入到傳統(tǒng)氧化物基耐火材料中,形成了氧化物-碳復(fù)合耐火材料,鎂碳耐火材料即是其中的一種,它曾經(jīng)在鋼鐵鑄造工業(yè)的發(fā)展中作出了重要貢獻(xiàn)[1-3]。鎂碳耐火材料在我國(guó)也經(jīng)歷了四十多年的研究和發(fā)展,并取得了顯著的成績(jī)。但隨著目前潔凈鋼技術(shù)、爐外精煉技術(shù)、鋼鐵工業(yè)節(jié)能減排技術(shù)及資源循環(huán)利用等技術(shù)的不斷發(fā)展,傳統(tǒng)的鎂碳耐火材料由于較高的石墨含量(12 ~ 20wt%),也逐步開(kāi)始無(wú)法滿足生產(chǎn)要求。主要原因包括:(1)碳的導(dǎo)熱系數(shù)高,造成含碳耐火材料熱損耗大,從而使煉鋼能耗增加;(2)高碳含量引發(fā)的鋼水增碳效應(yīng)降低了鋼材的理化性能;(3)石墨氧化導(dǎo)致材料結(jié)構(gòu)疏松,其高溫強(qiáng)度、抗侵蝕性等快速衰減,降低了耐火材料的使用壽命。
這些問(wèn)題急需進(jìn)一步優(yōu)化其工藝,尤其是降低其含碳量來(lái)加以解決。在這種技術(shù)背景下,國(guó)內(nèi)外大量學(xué)者都開(kāi)展了低含碳量、高性能的鎂碳耐火材料的研究,這主要包括:(1)將碳源從微米尺度向納米尺度發(fā)展,優(yōu)化基質(zhì)結(jié)構(gòu);(2)改善結(jié)合劑的碳結(jié)構(gòu),提高其抗氧化性進(jìn)而提高材料的強(qiáng)度和韌性;(3)抗氧化劑的復(fù)合使用及對(duì)碳素原料進(jìn)行保護(hù)處理,提高碳的抗氧化性。這些研究都力求使鎂碳耐火材料中的碳含量低于8 wt%,有的甚至低于3 wt%,從而最大限度降低對(duì)鋼水的增碳,同時(shí),還能改善煉鋼能耗,提升耐火材料的使用壽命[4,5]。
2 國(guó)內(nèi)外采用納米技術(shù)改善鎂碳材料的研究現(xiàn)狀
隨著鎂碳耐火材料的低碳化(碳含量低于8wt%)的研究,人們發(fā)現(xiàn),鎂碳耐火材料降碳后,其抗熱震性和抗侵蝕性也都大幅下降,這很難滿足實(shí)用要求。因此,高性能低碳鎂碳耐火材料的研究格外引人注目。近期,研究者們發(fā)現(xiàn)在鎂碳耐火材料中引入納米技術(shù)來(lái)降低碳含量是制備高性能、低碳化耐火材料的一種重要方法。
Tamura等2003年首次開(kāi)展了將納米炭黑引入到鎂碳耐火材料中的研究[6]。隨后九州耐火材料公司采用該技術(shù)開(kāi)發(fā)了低碳鎂碳耐火材料,在碳含量?jī)H為1 ~ 3 wt%的情況下,鎂碳耐火材料的抗熱震性、抗侵蝕性和抗氧化性都得到提高,而且其隔熱性能也有所改善[7]。同時(shí),他們還研究了含2 wt%的單球形炭黑的鎂碳耐火材料,發(fā)現(xiàn)其具有高的耐壓強(qiáng)度及優(yōu)良的抗熱震性。兩年后,他們的研究又揭示了低碳鎂碳材料的抗熱震性和抗侵蝕性提高的微觀原因[8-9]。含納米炭黑和雜化樹(shù)脂的低碳鎂碳材料經(jīng)高溫?zé)崽幚砗?,?nèi)部會(huì)生成大量的柱狀、纖維狀或晶須狀的碳化物,它們形成的相互交錯(cuò)的網(wǎng)絡(luò)結(jié)構(gòu)提高了低碳鎂碳耐火材料的抗熱震性和抗侵蝕性。Yasumitsu等人[10]也利用單球形炭黑,開(kāi)發(fā)了低碳鎂碳材料(碳含量為4 wt%),與傳統(tǒng)鎂碳材料相比,它具有相同的抗熱震性和更優(yōu)異的抗侵蝕性。黑崎公司與新日鐵公司[11]也利用納米技術(shù)制備了低碳鎂碳材料(碳含量為10 wt%或8 wt%),結(jié)果表明:與傳統(tǒng)鎂碳材料相比,它的保溫性能和高溫服役壽命更好。針對(duì)納米炭黑在鎂碳材料中表現(xiàn)出誘人的性能,Tamura等人[12]進(jìn)一步深入研究了納米技術(shù)在耐火材料中的應(yīng)用技術(shù)理念,并指出未來(lái)納米技術(shù)的重點(diǎn)在于提升納米顆粒在耐火材料中的分散性和形貌可控性。印度人Bag等[13-14]也制備得到了納米石墨和炭黑為復(fù)合炭源的低碳鎂碳材料,其納米石墨和炭黑的含量分別為3 wt%和0.9 wt%,發(fā)現(xiàn)其性能優(yōu)于石墨含量為10 wt%的傳統(tǒng)鎂碳材料。此外,還有國(guó)外研究者[15-16]將SiC、TiC等復(fù)合的納米炭黑以及碳納米纖維等引入鎂碳耐火材料中,成功將其碳含量降至3wt%左右,且材料的抗熱震性和抗侵蝕性優(yōu)良,抗氧化性明顯改善。這是由于在鎂碳材料中添加的復(fù)合結(jié)合劑在高溫還原條件下熱處理后可原位生成碳納米纖維,它們?cè)诳臻g相互交織成三維網(wǎng)絡(luò),使得低碳鎂碳材料不但具有優(yōu)良的熱震穩(wěn)定性和抗侵蝕性,還具有較高的高溫強(qiáng)度及較低的熱導(dǎo)率,可明顯降低爐襯的熱損失,提高其服役壽命。
國(guó)內(nèi)諸多學(xué)者也開(kāi)展了含納米碳的低碳鎂碳耐火材料的研究。朱伯銓等[17]采用納米炭黑制備了碳含量小于6 wt%的低碳鎂碳材料,發(fā)現(xiàn)其高溫服役壽命與國(guó)外進(jìn)口鎂鈣材料相當(dāng)。李林等[18]將納米炭黑-酚醛樹(shù)脂引入鎂碳磚中,發(fā)現(xiàn)其氣孔尺寸減小,高溫性能提高。孫加林等[19]研究了3 wt%低碳鎂碳材料的性能,發(fā)現(xiàn)其力學(xué)性能、抗氧化性和抗熱震性隨炭黑顆粒尺寸的減小而提高,當(dāng)炭黑達(dá)到納米量級(jí)時(shí),試樣的抗熱震性能比傳統(tǒng)16 wt%高碳鎂碳材料更為優(yōu)異。顏正國(guó)等[20]以硼酸和炭黑為原料,采用碳熱還原法合成部分石墨化B4C-C復(fù)合納米粉體,并利用其對(duì)鎂碳磚進(jìn)行了低碳化改性。發(fā)現(xiàn)它作為碳源和抗氧化劑用于低碳鎂碳磚時(shí),不僅可以使其常規(guī)物理性能滿足實(shí)際工程的需求,而且還能讓耐火材料具有良好的抗氧化性及熱震穩(wěn)定性。華旭軍等[21]以金屬鈦、氧化鈦及炭黑為原料在真空感應(yīng)爐內(nèi)合成了炭黑和TiC復(fù)合納米粉體,開(kāi)發(fā)出碳含量為4 ~ 6wt%的低碳鎂碳磚。謝朝暉等[22]將二茂鐵引入到低碳鎂碳磚中提高了材料的抗侵蝕性和抗熱震性,這源于二茂鐵熱解產(chǎn)生的納米 Fe 粒子催化基質(zhì)原位反應(yīng)生成大量的尖晶石晶須。
3 納米技術(shù)在鎂碳耐火材料中的應(yīng)用前景
在低碳耐火材料中引入納米物相可提高其高溫強(qiáng)度、抗熱震性和抗侵蝕性。這是因?yàn)榧{米物相可改善鎂碳材料的顯微結(jié)構(gòu),使材料結(jié)構(gòu)致密化、微細(xì)化,起到提高物理強(qiáng)度的作用。同時(shí),納米相彌散在材料中有助于緩解熱應(yīng)力,使裂紋偏轉(zhuǎn)或裂紋被釘扎,從而耗散大量的能量,充分提高材料的韌性。納米粒子包裹石墨可提高含碳材料的抗氧化性,以及防止鋼渣的侵蝕和滲透等[23]??傊瑢⒓{米技術(shù)應(yīng)用到鎂碳耐火材料中,可為開(kāi)發(fā)高性能、低碳化鎂碳耐火材料提供新方法。
但納米技術(shù)在鎂碳耐火材料中的應(yīng)用研究尚處起步階段,仍有很多工程問(wèn)題需要解決,其中最顯著的就是納米材料的團(tuán)聚問(wèn)題。納米材料,包括納米顆粒、納米纖維及納米管等,由于其巨大的比表面積和表面能的存在,以及由于其納米顆粒間的范德華力大于其自身重量的原因,導(dǎo)致其在實(shí)際工程中往往存在團(tuán)聚現(xiàn)象。團(tuán)聚后的顆粒尺寸將不再在納米范圍內(nèi),從而失去納米材料的小尺寸效應(yīng)帶來(lái)的活性。此外,團(tuán)聚現(xiàn)象使納米材料在鎂碳材料中分布均勻變得十分困難,極易由于團(tuán)聚而在材料局部富集,這不僅不能改善鎂碳材料的耐火性能,反而還會(huì)降低其理化性能。
因此,發(fā)展納米材料在鎂碳耐火材料中的均勻分散技術(shù)至關(guān)重要。這可采用超聲分散、納米表面化學(xué)修飾等方法。例如,我們可以采用超聲分散來(lái)改善納米炭黑在鎂碳材料中分布的均勻性。在超聲波的劇烈震蕩下,處在液態(tài)環(huán)境下的納米碳會(huì)有微泡形成和破裂的交互過(guò)程,伴隨著這一交互過(guò)程,耐火材料中將激起由于能量瞬間釋放而產(chǎn)生的高強(qiáng)振動(dòng)波。這些短暫的高能微環(huán)境,將在材料中產(chǎn)生局部高溫、高壓或強(qiáng)沖擊波和微射流等效應(yīng),能很好地地弱化納米粒子間的范德華力,從而有效地制止納米粒子間的團(tuán)聚現(xiàn)象[24-25]。但這些分散技術(shù)目前還停留在實(shí)驗(yàn)室階段,將它們應(yīng)用在工業(yè)化大規(guī)模生產(chǎn)中還需要解決好設(shè)備及工藝參數(shù)等諸多實(shí)際問(wèn)題,包括對(duì)超聲功率和超聲時(shí)間等重要工藝參數(shù)的反復(fù)摸索。因?yàn)榧{米相在耐火材料中的超聲分散時(shí)間并非越長(zhǎng)越好,而是存在一個(gè)最佳的值。當(dāng)超聲時(shí)間超過(guò)某一臨界值時(shí),超聲激勵(lì)時(shí)產(chǎn)生的局部高溫增加,使體系溫度升高,熱能和機(jī)械能都不斷增加,反而會(huì)使得納米顆粒碰撞的幾率增加,導(dǎo)致其進(jìn)一步團(tuán)聚。
此外,納米技術(shù)在實(shí)際工程應(yīng)用中另一關(guān)鍵問(wèn)題是工藝成本較高。眾所周知,由于納米纖維等納米材料制備工藝復(fù)雜,設(shè)備要求高,導(dǎo)致其價(jià)格昂貴。這就使得采用納米技術(shù)來(lái)改善鎂碳材料性能時(shí),性能改善與成本降低間存在一定的矛盾。例如,將納米粉引入到氧化物制品中以降低其燒結(jié)溫度,但降低燒結(jié)溫度所節(jié)省的成本往往還不能抵消由于引入納米材料后原料成本的上升。那么,最終使用納米相復(fù)合后的耐火材料由于其經(jīng)濟(jì)效益的降低往往會(huì)阻礙它們?cè)趯?shí)際工程領(lǐng)域中的應(yīng)用。這就需要我們深入探討在耐火材料中引入納米材料和微米材料的性價(jià)比問(wèn)題。如果引入納米尺度的原料與微米尺度的原料對(duì)耐火材料性能改善的差異性較小,而且,引入微米尺度的原料同樣能達(dá)到耐火工程的要求,則引入納米技術(shù)并不具有實(shí)用的性價(jià)比。
因此,在納米原材料的選用上,除了要考慮其對(duì)耐火材料性能和顯微結(jié)構(gòu)的提升,對(duì)其工程性價(jià)比也要進(jìn)行優(yōu)化。實(shí)際使用中,后者往往還是決定耐火材料是否能在工程應(yīng)用中推廣的關(guān)鍵因素。目前,在納米技術(shù)領(lǐng)域中,將納米原材料以溶膠、凝膠的形式引入比直接引入其相應(yīng)的固態(tài)納米顆粒往往更利于其在耐火材料中的分散,并且溶膠、凝膠的價(jià)格相對(duì)低廉,對(duì)于提高耐火材料的理化性能及其服役壽命具有更現(xiàn)實(shí)的意義。此外,采用納米前驅(qū)體技術(shù),并使其在加熱過(guò)程中產(chǎn)生原位分解形成納米結(jié)構(gòu),也能在耐火材料中產(chǎn)生極佳的分散效果。而且,這種原位分解產(chǎn)生的納米結(jié)構(gòu)可與耐火材料基體進(jìn)一步化學(xué)反應(yīng)形成新的納米物相,從而還能進(jìn)一步優(yōu)化材料的顯微結(jié)構(gòu)和理化性能。這種納米前驅(qū)體技術(shù)不僅價(jià)格低廉,關(guān)鍵是它能使納米原料分散性得到極大改善,充分發(fā)揮納米材料的小尺寸效應(yīng)和化學(xué)活性。因此可以預(yù)計(jì),在未來(lái)的耐火材料工業(yè)中采用化學(xué)凝膠或納米前驅(qū)體技術(shù)將展現(xiàn)出美好前景。
4 結(jié) 語(yǔ)
低碳鎂碳耐火材料在潔凈鋼生產(chǎn)和煉鋼節(jié)能減排技術(shù)中具有廣泛的應(yīng)用前景。研究表明,采用納米技術(shù)可獲得與傳統(tǒng)高碳鎂碳耐火材料性能相當(dāng)?shù)牡吞兼V碳材料,是制備優(yōu)質(zhì)高性能鎂碳耐火材料的新途徑,極具工程實(shí)用化前景。但目前納米技術(shù)在鎂碳耐火材料中的應(yīng)用研究還處在實(shí)驗(yàn)室階段,真正將其應(yīng)用到耐火工程中還存在許多挑戰(zhàn)。尤其是,解決好耐火材料納米物相的分散性問(wèn)題和性價(jià)比問(wèn)題至關(guān)重要。采用化學(xué)凝膠技術(shù)或納米前驅(qū)體技術(shù)不僅工藝可行、性價(jià)比高,更重要的是,還能利用其原位分解效應(yīng)實(shí)現(xiàn)良好的納米物相分散,是目前最適合工業(yè)化應(yīng)用的技術(shù)手段,將在未來(lái)的耐火材料工業(yè)中展現(xiàn)出美好前景。
參考文獻(xiàn)
[1] 李林. 低碳鎂碳復(fù)合材料性能提高的途徑及材料顯微結(jié)構(gòu)的研究[D]. 北京: 北京科技大學(xué)博士學(xué)位論文, 2005.
[2] Ewais E M. Carbon based refractories[J]. Journal of the Ceramic Society of Japan, 2004, 112(10): 517-532.
[3] 阮智, 李楠. MgO-C耐火材料對(duì)鋼水的增碳作用及機(jī)理的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2004, 17(7): 26-29.
[4] 朱伯銓?zhuān)?張文杰. 低碳鎂碳磚的研究現(xiàn)狀與發(fā)展[J]. 武漢科技大學(xué)學(xué)報(bào), 2008, 31(3): 431-434.
[5] 彭小艷, 李林, 彭達(dá)巖等. 低碳鎂炭磚及其研究進(jìn)展[J]. 耐火材料, 2003, 37(6): 355-357.
[6] Tamura S, Ochiai T, Takanaga S, et al. Nano-tech. refractories-1: The development of the nano structural matrix[C]. Proceedings of UNITECR’03 congress, Osaka, Japan, 2003: 517-520.
[7] Takanaga S, Ochiai T, Tamura S, et al. Nano-tech. refractories-2: The application of the nano structural matrix to MgO-C bricks[C]. Proceedings of UNITECR’03 congress, Osaka, Japan, 2003: 521-524.
[8] Tamura S, Urushibara Y, Matsuura O, et al. Nano-tech. refrctories-6: Observation of the texture after carbonization of nano-tech. refractories [C]. Proceedings of UNITECR’07 congress, Dresden, Germany, 2007: 627.
[9] Tamura S, Ochiai T, Matsui T, et al. Technological philosophy and perspective of nanotech refractories[C]. Nippon Steel Technical report No. 98, July, 2008.
[10] Yasumitsu H, Hirashima M, Matsuura O, et al. Nano-tech. refractories-9: The basic study on the formation of the nano structured marix in MgO-C bricks[C]. Proceedings of UNITECR’11 congress, Kyoto, Japan, 2011.
[11] Tanaka M, Kamioa H, Yoshitomi J, et al. Nano-tech. refractories-10: Nano-tech. MgO-C bricks for converters to minimize the heat loss[C]. Proceedings of UNITECR’11 congress, Kyoto, Japan, 2011.
[12] Tamura S, Ochiai T, Takanaga S, et al. Nano-tech. refractories-8: Technological philosophy and evolution of nano-tech. refractories[C]. Proceedings of UNITECR’11 congress, Kyoto, Japan, 2011.
[13] Bag M, Adak S, Sarkar R. Study on low carbon containing MgO-C refractory: Use of nano carbon[J]. Ceramics International, 2012, 38(3): 2339-2346.
[14] Bag M, Adak S, Sarkar R. Nano carbon containing MgO-C refractory: Effect of graphite content[J], Ceramics International, 2012, 38:4909-4914.
[15] Matsui T, Goto K, Yamada Y, et al. Characteristics and applications of nano-tech magnesia carbon bricks[A].Proc.of UNITECR’05, Orlando, US, 2005:176-179 .
[16] Hattanda H, Yotabun T, Tsuda T, et al. Nano-Tech.Refractories-7: Application of nano structured matrix to SN plates[A]. Proc.of UNITECR’07,Dresden,Germany,2007: 204-207.
[17] 朱伯銓?zhuān)?張文杰, 姚亞雙. 低碳鎂碳耐火材料的研究現(xiàn)狀與發(fā)展[J]. 耐火材料, 2006, 40: 90-95.
[18] Li L, Tang G S, He Z Y,et al.Effects of dispersion and content of nanometr carbon on mechanical performance of low carbon MgO-C materials[A].Proc.of UNITECR’09, Salvador, Brazil, No.007.
[19] Liu B, Sun J L, Tang G S, et al. Effects of nanometer carbon black on performance of low-carbon MgO-C composites[J]. Journal of Iron and Steel Research, International, 2010, 17(10): 75-78.
[20] 顏正國(guó),陳偉,于景坤. B4C-C復(fù)合粉體的合成及其在低碳鎂碳磚中的應(yīng)用[J].過(guò)程工程學(xué)報(bào),2009,9( 5) :1011-1016.
[21] 華旭軍,朱伯銓?zhuān)钛┒? TiC-C復(fù)合粉體的制備及其對(duì)低碳鎂碳磚抗氧化性能的影響[J]. 武漢科技大學(xué)學(xué)報(bào), 2007, 30(2):145-148.
[22] 謝朝暉,葉方保.二茂鐵對(duì)MgO-C耐火材料基質(zhì)顯微結(jié)構(gòu)的影響[J].材料導(dǎo)報(bào),2009,23(5) : 115-118.
[23] Mousom B, Sukumar A, Ritwik S. Study on low carbon containing MgO-C refractory: Use of nano carbon[J]. Ceramics International, 2012, 38(3):2339-2346.
級(jí)別:省級(jí)期刊
榮譽(yù):中國(guó)優(yōu)秀期刊遴選數(shù)據(jù)庫(kù)
級(jí)別:CSCD期刊
榮譽(yù):中國(guó)優(yōu)秀期刊遴選數(shù)據(jù)庫(kù)
級(jí)別:北大期刊
榮譽(yù):Caj-cd規(guī)范獲獎(jiǎng)期刊
級(jí)別:北大期刊
榮譽(yù):Caj-cd規(guī)范獲獎(jiǎng)期刊
級(jí)別:統(tǒng)計(jì)源期刊
榮譽(yù):中國(guó)科技期刊優(yōu)秀期刊