• <input id="zdukh"></input>
  • <b id="zdukh"><bdo id="zdukh"></bdo></b>
      <b id="zdukh"><bdo id="zdukh"></bdo></b>
    1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

      <wbr id="zdukh"><table id="zdukh"></table></wbr>

      1. <input id="zdukh"></input>
        <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
        <sub id="zdukh"></sub>
        公務員期刊網 精選范文 混凝土結構論文范文

        混凝土結構論文精選(九篇)

        前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的混凝土結構論文主題范文,僅供參考,歡迎閱讀并收藏。

        混凝土結構論文

        第1篇:混凝土結構論文范文

        1.1加強原材料的質量控制

        (1)粗細骨料的選用。

        在滿足泵送要求及鋼筋間距的基礎上,為降低水及水泥的使用量,應盡量選擇大粒徑的碎石。除此之外,還應該采用干凈、強度高、針片狀少的粗細骨料,且將其含泥量控制在l%以內,同時確保粗細骨料不含有有機物質和有毒有害物質。

        (2)粉煤灰的選用。

        粉煤灰是一種非常重要的摻合料,不僅可以將混凝土的和易性大大提高,而且對混凝土的泵送施工十分有利;同時粉煤灰還能代替部分水泥來降低水泥的使用量,從而使水泥的水化熱得到有效降低。在進行粉煤灰的選擇時必須對其細度及粒度引起注意,對粉煤灰進行磨細加工必須要達到I級標準。但是如地下室混凝土類有較高抗滲要求的,需要在滿足必混凝土的抗滲性能的基礎上,通過嚴格的計算及試驗來確定是否能夠將粉煤灰摻入。粉煤灰的選用需結合實際情況進行。

        (3)外加劑的選用。

        為保證大體積混凝土的優質澆筑效果,應對外加劑種類進行合理選擇。可適當采用減水劑、膨脹劑、緩凝劑等來降低水的用量,進而達到降低水泥的水化熱的目的。應通過配合比試驗來確定外加劑的使用量,同時注意外加劑比例的搭配,保證達到澆筑效果。

        1.2加強對施工過程的控制

        (1)混凝土的澆筑

        ①混凝土的攤鋪厚度的確定,需結合混凝土的和易性及所用振搗器的作用深度兩個方面。如采用泵送混凝土,則攤鋪厚度應不大于600毫米;如采用非泵送混凝土,則攤鋪厚度應不大于400毫米。如采用推移式連續澆筑或分層連續澆筑的方式,應盡可能地將層間的間隔時間縮短,根據試驗確定混凝土的初凝時間,并在前層混凝土初凝之前將其次層混凝土澆筑完畢;②目前在大體積混凝土結構施工中,采用較為普遍的澆筑方法是分層連續澆筑法,其具有振搗方便、能保證澆筑質量及可通過混凝土層散熱,降低混凝土溫升幅度等諸多優點。而對于澆筑能力不夠、澆筑面積和澆筑工程量較大且一次連續澆筑層厚度通常不超過3m的混凝土工程,可以選擇采用推移式連續澆筑法;③在分層進行大體積混凝土結構的澆筑時,應對其表面進行及時清理,將骨料均勻露出;在澆筑上層混凝土前應及時清理混凝土的表面污物,沖洗完畢后不能留有積水,對非泵送混凝土和較低流動度的混凝土可進行適當接漿處理;④在澆筑大體積混凝土時,應及時將混凝土表面的泌水清除。由于泵送混凝土一般具有較大的水灰比,因而普遍存在較為嚴重的泌水現象,需及時清除泌水,避免影響大體積混凝土的澆筑質量。

        (2)混凝土的溫測

        混凝土的溫測技術對保證大體積混凝土結構的施工質量也有著直接影響。對大體積混凝土結構的溫度有效控制混可以防止產生底板裂縫。在進行混凝土溫測時,必須測量所有土層的溫度,并深入分析各土層的溫度特性。目前普遍使用的溫度傳輸器是電阻型溫度計,在進行溫度測量時,應將測溫度位置選定,完成記號的編訂和定位后,再進行土層溫度的測量工作??刂茰囟葢梢酝ㄟ^以下兩種方法進行:一種是降溫法,可以事先按照設計要求將冷卻水管在大體積混凝土內部安裝好,并在澆筑前試水,避免由于漏水而影響混凝土的澆筑質量。通過循環冷卻水降低混凝土內部溫度,減小內外溫度差異,防止大體積混凝土裂縫的產生;另一種是保溫法,即在澆筑完混凝土之后,通過使用人工手段提高砼表面及四周散熱面的溫度,進而有效控制混凝土的溫度,保障大體積混凝土結構的施工質量。

        (3)混凝土的養護

        大體積混凝土的養護工作對保障混凝土結構質量安全有著不可忽視的作用,必須得到重視。而在大體積混凝土的具體施工過程中,很多施工人員恰巧會忽略對混凝土的養護工作,只注重對混凝土的澆筑施工,致使大體積混凝土產生裂縫,從而給建筑結構的日后使用埋下安全隱患。并且如果沒有及時處理裂縫問題,使裂縫繼續擴大,就會對建筑結構的使用性能和安全性能造成惡劣影響。因此結束大體積混凝土的澆筑工作后,必須及時對混凝土進行養護。施工季節不同,養護手段也不盡相同。夏季施工時,由于溫度較高,因此應該可通過灑水濕潤來養護混凝土;冬季施工時,由于溫度很低,因此可通過保溫保濕措施來養護混凝土,另外,當環境溫度低于5℃時應暫停大體積混凝土的澆筑工作,待溫度達到5℃之后,在繼續進行澆筑工作。在對混凝土進行養護期間,應時刻關注混凝土的內外溫差情況,可通過循環水流量及進口的水溫的調節來對內外溫差進行控制,將其控制在25℃范圍內。大體積混凝土的養護時間應在十四天以上,如情況特殊,則應結合實際情況將養護時間適當延長。

        2結束語

        第2篇:混凝土結構論文范文

        摘要:沿海地區混凝土氯離子鋼筋銹蝕防護

        1工程概況及特征

        中石化股份有限公司金陵分公司160萬噸/年延遲焦化裝置是目前亞洲最大的焦化生產裝置。該裝置的主要反應部分是兩臺焦炭塔,焦炭塔塔高約42m,直徑9.4m,由厚25~40mm15CrMo合金鋼板焊接而成。由中石化洛陽工程公司設計。

        焦炭塔坐落在兩層鋼筋混凝土框架上,六根框架柱柱高19.3m,柱截面為1.8m×1.8m、每層框架的面積為13.2m×24.6m,二層框架平臺板厚2.4m,板中開有兩個直徑為7.8m的孔洞,每個孔洞旁設置24個M56螺栓用于固定焦炭塔裙座。

        焦炭塔框架頂層鋼筋混凝土板厚2.4m,混凝土方量大約為450m3,屬于大體積鋼筋混凝土結構。每個焦炭塔自重約300t,生產時最大垂直荷載約2000t。焦炭塔安裝就位后須對復合鋼板進行熱處理,熱處理時溫度高達690%26ordm;C,正常生產時塔內最高溫度高達500%26ordm;C。焦炭塔外壁雖有保溫層,但在裙座底部及塔底蓋四周保溫層很難覆蓋嚴密,使得焦炭塔底座四周混凝土的輻射溫度高達95%26ordm;C。

        據有關資料,山東某石化公司延遲焦化裝置焦炭塔框架混凝土板共出現160多條裂縫,其中裂縫寬度0.3~0.32mm有4條,0.15~0.25mm有23條,0.15mm以下的133條。這些裂縫主要沿孔內側周邊分布,并由板孔下角向外發展,裂縫在最小斷面處最多,板的外側裂縫均在板的中部,裂縫寬度呈中間大兩頭小。此種裂縫的出現會引起鋼筋銹蝕,混凝土碳化,降低混凝土的抗凍融、抗疲憊及抗滲能力等。湖北某煉油廠延遲焦化裝置焦炭塔框架頂層鋼

        筋混凝土大厚板也出現類似情況。

        2厚板溫度裂縫成因及纖維抗裂機理

        混凝土溫度裂縫多發生在大體積混凝土表面或溫差變化較大的結構中。焦炭塔框架頂層鋼筋混凝土板為大體積混凝土結構,此類結構混凝土澆筑后,硬化過程中水泥水化產生大量水化熱。當水泥用量在350~550kg/m3,每m3混凝土將釋放出17500~27500kJ的熱量,從而使混凝土內部溫度升達70%26ordm;C左右甚至更高。由于混凝土的體積較大,大量的水化熱聚積在混凝土內部而不易散發,導致內部溫度急劇上升,而混凝土表面散熱較快,這樣就形成內外的較大溫差,較大的溫差造成內部和外部熱脹冷縮的程度不同,使混凝土表面產生一定的拉應力。實踐表明當混凝土本身溫差達到25%26ordm;C~26%26ordm;C時,混凝土內便會產生大致在10MPa左右的拉應力。當拉應力超過混凝土的抗拉強度極限時,混凝土表面就會產生裂縫。此外,根據金陵分公司160萬噸/年延遲焦化裝置的生產工藝要求,每個焦炭塔每24h完成一爐焦炭的生產,兩個焦炭塔交替生產,也就是說焦炭塔底座四周混凝土每24h就會由正常的室外溫度迅速上升到95%26ordm;C左右。這樣也會在混凝土內外產生較大溫差。

        由此可見,假如不采取非凡辦法,混凝土內外溫差會引起焦炭塔框架頂層鋼筋混凝土大厚板開裂。為此采用在混凝土中加入纖維的方法來解決厚板開裂的新問題。

        當在水泥基材料中摻入纖維后,由于此時表層材料中存在纖維材料,使得其失水面積有所減少,水分遷移較為困難,從而使毛細管失水收縮形成的毛細管張力有所減少。同時,依靠纖維材料和水泥基之間的界面吸附粘結力、機械嚙合力等,增加了材料反抗開裂的塑性抗拉強度,從而使材料表層的開裂狀況得以減輕,甚至消失。

        有關試驗表明當纖維加入量為混凝土體積的0.1%左右時,混凝土抗拉強度不會提高很多,但摻入少量的聚丙烯纖維可以促進混凝土抗拉性能后期強度的持續增長,這是一種纖維的補強效應而非增強效應,纖維抑制混凝土裂縫產生是由于纖維的阻裂效應。對于混凝土這類內部原來有缺陷的材料,其開裂強度可因混凝土內加入纖維后,混凝土的韌性增大、裂縫尺寸減少或裂縫尖端應力集中系數降低而得到提高。

        3杜拉纖維混凝土在厚板中的應用

        中石化股份有限公司金陵分公司160萬噸/年延遲焦化裝置焦炭塔框架二層混凝土大厚板采用了杜拉纖維混凝土的工藝,目的是阻止或減少混凝土大厚板中裂縫的出現。杜拉纖維(DURAFIBER)是一種經過非凡生產工藝處理的高強聚丙烯單絲纖維。它的表面處理技術確保纖維在水泥漿中具有極佳的分散性,在攪拌過程中不結團;纖維和水泥基體有良好的粘結強度。杜拉纖維的長度為19mm,纖度19D,比重為0.91,抗拉強度為276MPa(和1#鋼相近),彈性模量為3793MPa,拉伸極限為15%,對酸、堿都有極強的抵御能力。杜拉纖維經過非凡的抗紫外線處理,具有一定的抗紫外線老化能力。杜拉纖維加入混凝土中采用常規攪拌設備攪拌,只要略延長攪拌時間即可均勻分布于混凝土中。

        3.1混凝土原材料選擇

        (1)水泥。采用南京江南粉磨有限公司生產的P.O42.5水泥,細度為0.60%,3d抗折強度為5.8MPa,3d抗壓強度為24.4MPa,初凝時間為2h30min,終凝時間為3h35min。

        (2)粗集料。采用湯山采石場的5~25mm碎石,泥含量為0.5%,泥塊含量0.1%,針片狀顆粒8.0%,壓碎值7.2%,密度2530kg/m3,松散體積密度1593kg/m3,空隙率37.2%。

        (3)細集料。采用無為砂場的中粗砂,泥含量為0.5%,泥塊含量為0.3%,細度模數為2.5,級配區為п級,密度2630kg/m3,松散體積密度1550kg/m3,空隙率41%。

        (4)外加劑。采用南京江南粉磨有限公司生產的NF-15混凝土外加劑。

        (5)活性拌和物。采用南京熱電廠的粉煤炭。

        (6)合成纖維。采用美國希爾兄弟化工公司生產的杜拉纖維。

        3.2混凝土配合比

        強度等級為C40,混凝土坍落度為160~180mm。配合比見表1。

        表1纖維混凝土配合比

        原材料名稱

        水泥

        黃砂

        石子

        外加劑

        粉煤灰

        杜拉纖維

        規格

        P.O42.5

        中粗砂

        5~25mm

        NF-15

        飲用水

        Ⅱ級

        19mm

        配合比(kg/m3)

        394

        739

        1063

        7.56

        178

        26

        0.8

        3.3混凝土攪拌和澆搗

        澆筑大厚板所用的杜拉纖維混凝土由南京長江二橋混凝土有限公司供給。兩臺2m3的攪拌臺負責攪拌杜拉纖維混凝土,攪拌時間為180s,杜拉纖維事先經過分裝(每袋1.6kg)由攪拌臺加料口直接加入攪拌機攪拌。

        采用兩臺混凝土泵車從焦炭塔框架兩對角位置同時進行澆注。由于鋼筋數量太密,混凝土振搗困難,故采用四臺混凝土振動泵同時振搗,振搗時間不少于40s。杜拉纖維在混凝土中分散均勻,和易性比普通混凝土有很大提高,但混凝土的坍落度有所下降。這是因為杜拉纖維的總表面積很大,表面吸附水,因此纖維的加入會增加拌和料的粘稠度,降低坍落度。

        金陵分公司160萬噸/年延遲焦化裝置已于2004年12月20日交付使用,12月30日出合格產品,連續生產三個多月后通過對大厚板的多次檢查,未發現明顯裂縫,達到了預期效果。

        4杜拉纖維混凝土施工要點

        (1)杜拉纖維的加入會增加拌和料的粘稠度,降低混凝土坍落度。如發現澆筑困難,一般不應通過增加用水量來改善混凝土性能,而應采用加入塑化劑或減水劑的方法。

        (2)界面效應對杜拉纖維混凝土的性能有不利影響。雖然纖維-基材界面尺寸很小,但杜拉纖維細度高、比表面積大,即使纖維的摻量較低,也能在混凝土中獲得很大的纖維-基材界面。由于杜拉纖維不親水,纖維—基材界面往往具有比基材更高的水灰比,這將造成纖維-基材呈弱界面效應,對混凝土強度不利。應在混凝土中加入粉煤灰等活性混合材料改善纖維混凝土的界面性能。

        (3)杜拉纖維在使用前應按照纖維的加入量和混凝土攪拌機的容量,事先進行分裝,以保證纖維加入量的準確。在砂、石、水泥和水等混凝土材料攪拌均勻后,從攪拌臺加料口直接加入杜拉纖維,并適當延長攪拌時間(1~2min)。切不可將杜拉纖維直接放入混凝土運輸車內,以免影響纖維在混凝土中的分散。

        (4)應派專人對杜拉纖維的加入及混凝土的攪拌過程進行全過程監督。一般商品混凝土廠的攪拌臺粉塵污染較為嚴重,工作環境惡劣,加入纖維的操作工人多為臨時雇用的臨時工,人員素質不高,少加、漏加、多加的現象時有發生。因此必須對整個纖維混凝土的生產過程進行有效監督,從而保證杜拉纖維混凝土按設計要求和規范標準生產。

        第3篇:混凝土結構論文范文

        關鍵詞:特大橋海工混凝土耐久性淺談應用

        引言

        由于陳家貢灣特大橋處于海水環境,海水環境對于橋梁混凝土結構具有強腐蝕性,按照一級公路橋梁結構100年設計基準期和本工程使用年限的要求進行結構耐久性設計,為保證陳家貢灣特大橋混凝土結構的耐久性,本工程采取了以高性能混凝土技術為核心的綜合耐久性技術方案。然而我國目前尚沒有大型海洋工程超長壽命服役的相關技術規范,高性能混凝土的設計、生產、施工技術在工程中的應用尚為空白,因此結合陳家貢灣特大橋工程的具體要求,研究跨海大橋混凝土結構耐久性策略和高性能混凝土的應用技術極為迫切和重要。

        1陳家貢灣特大橋混凝土結構布置和耐久性設計

        1.1陳家貢灣特大橋混凝土結構布置陳家貢灣特大橋孔數—孔徑(孔—米)為60—30m,為裝配式預應力混凝土連續T梁橋,橋梁上部結構:六孔一聯、全橋共十聯,行車道板與橋面鋪裝采用剪力鋼筋連接;橋梁下部結構:橋墩采用雙懸臂預應力薄壁墩,墩柱為主截面3×1.5米的帶豎肋矩形截面,基礎采用柱式臺、樁基礎或重力臺、擴大基礎?;炷猎O計強度根據不同部位在C35~C50之間。

        1.2陳家貢灣特大橋附近海域氣象環境陳家貢灣特大橋地處東亞季風比較發達的黃海之濱,受季風和海洋氣候的影響,四季變化比較明顯,屬南溫帶濕潤季風氣候類型:夏季空氣濕潤,雨量充沛;冬季氣候干燥,時長稍寒。多年年平均最低氣溫為9.1℃、最高氣溫為15.9℃。最熱出現在八月,月平均氣溫為25℃,最冷出現在一月,月平均氣溫為-4.5℃。年平均相對濕度為72%,累年全年蒸發量平均為1462.2毫米,其中全年以五月份為最高,累年平均達到180.1毫米,一月最小,僅為54.8毫米,海區全年鹽度一般在15.00~34.00‰之間變化,屬強混合型海區,海洋環境特征明顯。

        1.3陳家貢灣特大橋面臨的耐久性問題在海洋環境下結構混凝土的腐蝕荷載主要由氣候和環境介質侵蝕引起,主要表現形式有鋼筋銹蝕、鹽類侵蝕、凍融循環、溶蝕、堿-集料反應和沖擊磨損等。陳家貢灣特大橋位于東亞季風比較發達的黃海之濱,因為天氣較暖,嚴重的凍融破環和浮冰的沖擊磨損可不予考慮;鎂鹽、硫酸鹽等鹽類侵蝕和堿骨料反應破壞則可以通過控制混凝土組分來避免;這樣鋼筋銹蝕破壞就成為最主要的腐蝕荷載。混凝土中鋼筋銹蝕可由兩種因素誘發:一是海水中Cl-侵蝕,二是大氣中的CO2使混凝土碳化。國內外大量工程調查和科學研究結果表明:海洋環境下導致混凝土結構中鋼筋銹蝕破壞的主要因素是Cl-進入混凝土中,并在鋼筋表面集聚,促使鋼筋產生電化學腐蝕。在陳家貢灣特大橋周邊沿海地區調查中亦證實,海洋環境中混凝土的碳化速度遠遠低于Cl-滲透速度,混凝土自然碳化速度平均為3mm/10年。因此,影響陳家貢灣特大橋結構混凝土耐久性的首要因素是混凝土的Cl-滲透速度。

        2提高海工混凝土耐久性的技術措施

        提高海工耐久性混凝土的主要技術措施有:

        2.1海工耐久性混凝土其技術途徑是采用優質混凝土礦物摻和料和聚羧酸高效減水劑復合,配以與之相適應的水泥和級配良好的粗細骨料,形成低水膠比,高密實、高耐久的混凝土材料。

        2.2提高混凝土保護層厚度這是提高海洋工程鋼筋混凝土使用壽命的最為直接、簡單而且經濟有效的方法。但是保護層厚度并不能不受限制的任意增加,當混凝土保護層過薄時,易形成裂縫等缺陷使保護層失去作用,鋼筋過早銹蝕,降低結構強度和延性;當保護層厚度過厚時,由于混凝土材料本身的脆性和收縮會導致混凝土保護層出現裂縫反而削弱其對鋼筋的保護作用。

        2.3混凝土保護涂層完好的混凝土保護涂層具有阻絕腐蝕性介質與混凝土接觸粘結的特點,其于砼粘結力不小于1.5Mpa,并且與砼表面的強堿性相適應,延長混凝土和鋼筋混凝土的使用壽命。然而大部分涂層本身會在環境的作用下老化,逐漸喪失其功效,一般壽命在5~10年,只能作輔助措施。

        2.4阻銹劑阻銹劑通過提高氯離子促使鋼筋腐蝕的臨界濃度來穩定鋼筋表面的氧化物保護膜,其品質對混凝土的主要物理性能、力學性能無不利影響,從而延長鋼筋混凝土的使用壽命。但由于其有效用量較大,作為輔助措施較為適宜。

        3加強陳家貢灣特大橋結構混凝土耐久性措施

        改善混凝土和鋼筋混凝土結構耐久性需采取的措施:①從材質本身的性能出發,提高混凝土材料本身的耐久性能,例如采用高效減水劑和高效活性礦物摻合料。②找出破壞混凝土耐久性作用的內在因素和外在因素,對主因和次因對癥施治,并根據具體情況采取除高性能混凝土以外的補充措施,例如綜合防腐措施。采用高性能混凝土是在惡劣的海洋環境下提高結構耐久性的基本措施,然后根據不同構件和部位,盡可能提高鋼筋保護層厚度(一般不小于50mm),某些部位還可復合采用保護涂層或阻銹劑等輔助措施,形成以高性能海工混凝土為基礎的綜合防護策略,有效提高陳家貢灣特大橋混凝土結構的使用壽命。

        因此,陳家貢灣特大橋混凝土結構的耐久性基本方案是:首先,混凝土結構耐久性基本措施是采用高性能混凝土,同時依據混凝土構件所處結構部位及使用環境條件,采用必要的補充防腐措施,如摻加鋼筋阻銹劑、混凝土外涂保護層等。在保證施工質量和原材料品質的前提下,混凝土結構的耐久性將可以達到設計要求。

        對于具體工程而言,耐久性方案的設計必須考慮當地的實際情況,如原材料的耐久性指標、工藝設備的可行性等,以及混凝土配合比經濟上的合理性。也就是說應該采取有針對性的,因地制宜的制定防腐方案。

        根據設計院提出的陳家貢灣特大橋主要部位構件的強度等級要求、構件的施工工藝和環境條件,對各部位混凝土結構提出具體的耐久性方案。

        4陳家貢灣特大橋高性能混凝土原材料耐久性

        4.1試驗用原材料及其物理化學性能

        4.1.1水泥試驗中采用了P.Ⅱ52.5,有關性能參數見下表。

        4.1.2高爐磨細礦渣(S95)

        高爐磨細礦渣(S95)的有關性能參數見表

        4.1.3硅粉

        硅粉的有關性能參數見表

        4.1.4粗骨料

        混凝土配制試驗用石為5~25mm連續級配碎石。

        4.1.5細骨料

        混凝土配制試驗用砂檢驗結果如表

        4.1.6減水劑

        試驗采用HSN-A聚羧酸高性能混凝土減水劑。

        4.1.7拌和用水飲用水。

        4.2試驗方案和主要試驗方法從高性能海工混凝土的基本要求出發,在原材料的優選試驗中,以混凝土的坍落度和擴展度評價混凝土的工作性,以抗壓強度等評價混凝土的物理力學性能,以混凝土的電通量和氯離子擴散系數(自然擴散法)試驗結果評價混凝土的抗氯離子滲透性能,并以耐久性能為首要要求。

        試驗中所采用的主要試驗方法有:

        4.2.1坍落度、擴展度混凝土的坍落度、擴展度按《新拌混凝土性能試驗方法》GBJ80-85測定。

        4.2.2抗壓強度混凝土的抗壓強度按《普通混凝土力學性能試驗方法》GBJ81-85測定。

        4.2.3混凝土的抗凍性能試驗參照《普通混凝土長期性能和耐久性能試驗方法》(GBJ82-85)進行。

        4.2.4混凝土的電通量和氯離子擴散系數快速試驗NEL-PER型混凝土電通量測定儀來評價混凝土抵抗氯離子滲透能力的標準。試驗儀器采用北京耐爾NEL-PER型混凝土電通量測定儀。通過在¢95×50mm的混凝土試樣兩端施加60V的直流電壓,通過檢測6hrs內流過的電量大小來評價混凝土的滲透性。

        用RCM-DH型氯離子擴散系數測定儀測定混凝土氯離子擴散系數的試驗方法,RCM法參照DuraCrete非靜態電遷移原理制定,定量評價混凝土抵抗氯離子擴散的能力,本方法適用于骨料最大粒徑不大于25mm的試驗室制作的或者從實體結構取芯獲得的混凝土試件。將標準養護28天的混凝土試件浸泡于質量濃度為3.0%的NaCl溶液中至指定齡期后,用混凝土切割機將混凝土試件切割成直徑=100±1mm,高=50±2mm的試件。將試件放入電解槽的夾具中,注入1L0.2mol/LKOH正極溶液與1L含5%NaCl的0.2mol/LKOH負極溶液,用測試機主機電源進行電遷移過程,劈開試件,用0.1mol/LAgNo3溶液測定顯色深度,最后用軟件計算混凝土試件的氯離子擴散系數。

        4.3混凝土配合比設計試驗主要研究C40和C50高性能海工混凝土的性能

        4.4高性能混凝土性能試驗結果及分析混凝土的物理力學性能試驗結果,常規耐久性能試驗結果

        高性能海工混凝土的氯離子擴散系數和抗凍性能

        高性能海工混凝土與普通混凝土相比較,具有優良的工作性能、相近的物理力學性能和優異的耐久性能,尤其是其耐海水腐蝕性能,混凝土氯離子擴散系數可小于3.0~1.0E-12m2/s

        5海工耐久性混凝土的質量保證措施

        5.1影響海工耐久性混凝土質量的因素高性能海工耐久性混凝土一般通常具有較高的膠凝材料用量、低水膠比與摻入大量活性摻合料等配制特點,致使高性能混凝土的硬化特點與內部結構同傳統的普通混凝土相比具有很大的差異,隨之帶來了它的早期體積穩定性差、容易開裂等問題。而混凝土的裂縫正是在使用階段環境侵蝕性介質侵入的通道,進而削弱其耐久性。

        5.2提高海工耐久性混凝土質量措施在試驗過程中發現,澆筑的混凝土由于陽光直射溫度較高產生溫差過大的現象,同時由于海灣地區海風比較強烈也容易造成混凝土表面失水過快,混凝土表面收縮較大而導致混凝土開裂。因此,在實際澆筑混凝土過程中,T梁或其它結構的混凝土澆注完畢后應立即在頂面和四周采取保溫保濕措施。對于T梁等大型預制構件,由于預制場地的限制和施工進度要求,采用低溫蒸養的方式。

        對于現澆混凝土,混凝土成型抹面結硬后立即覆蓋土工布,砼初凝后立即進行澆水養護,養護用水為外運淡水,記錄每天的溫度和風向,避免混凝土干濕交替,拆模前12小時擰松加固螺栓,讓水從側面自然流下養護,側面拆模不小于48小時。

        第4篇:混凝土結構論文范文

        根據建筑物投入使用中的需求進行設計,這種理念稱為概念設計。先對場地進行考察,得出一個宏觀的設計方案,再將方案中的各結構進行探討,得出優化方案,這種設計方法具有科學合理、節省時間的優點,在現代建筑中得到了廣泛使用。高層建筑結構特殊,對抗震性能的要求高于其他建筑,概念設計通過對設計結構中的承載力進行分析計算,對不符合規范的主要承重部位進行加固?;炷两Y構在高強度的壓力作用下很容易出現裂縫,內部鋼筋材料也會出現彎曲情況,促成這種質量問題的因素一方面是材料選取不合理,更重要的是設計方案不夠科學,高層結構概念設計中容易出現的問題主要分為以下幾方面:

        1.1結構不合理、性能缺少驗證。在高層建筑設計中同時要考慮多種因素,保證結構承載力的前提下盡量減少造價成本,需要將建筑結構從總體至細節進行優化。優化工作多數是將設計圖紙中的一些參數進行計算分析,適當的加固墻體厚度,常出現缺少對地基承載力的實際考察情況。高層建筑的抗震能力規定在中等強度地震時建筑物不會產生高危裂縫,并可通過修補達到預期效果,在發生高強度的地震時建筑物保證結構不出現坍塌。地震發生的幾率很小,一旦發生具有極大的毀滅性,高層建筑抗震性能只停留在設計層面,從數據上分析已經達到了國家要求,但各施工地點基層土壤礦物質組成存在差異,松軟程度也就不同,缺少驗證,真正發生危險時其穩定性很難保證。

        1.2結構設計缺少創新。高層建筑結構復雜,設計過程中受多種因素限制,為同時滿足多種需求,工程設計師都施行保守方案,缺少創新精神。鋼筋混凝土材質的墻體承載能力與結構有很大聯系,在剪力墻設計方案中,應充分借鑒國外先進技術,基于傳統結構進行創新,解決承載力不足的問題,同時使高層建筑整體結構更符合大眾審美,減少造價支出。概念設計在結構優化上的運用還受很多施工技術以及設備使用方面的限制,阻礙建筑工程行業進步。

        1.3受力分布不均勻。高層建筑上下層的結構是不同的,為保證自身重力不會對建筑物造成破壞,基層修筑中會應用到大量的鋼筋混凝土材料,加固底層的同時削弱上層,可減輕對地基的壓力,同時建筑物承受風力和地震破壞的能力更強。進行概念設計過程中,沒有充分考慮轉換層占據的空間和對受力平衡的影響,承重柱滿足了承載上層壓力的要求,但墻體產生的剪力不能與內部的應力平衡,作用在水平方向時形成了破壞力。概念設計中缺少優化環節導致這一現象的產生,很難保障整體結構的穩定性。

        1.4概念設計中常見問題的解決方案。設計過程中不可脫離實際情況,在前期準備工作中對建筑場地進行詳細的測量,將地區可能出現的自然災害進行模擬實驗,根據測試結果對設計結構進行優化。充分考慮建筑物的自重,滿足對抗震性能的要求,同時在結構上進行改進,應用力學知識,節省建筑過程中的原材料使用。合理修筑剪力墻,結構在成體建筑中起到承重作用,但不能破壞空間整體性,注重格局的設計,將各單元的樓梯間進行分別設計,根據不同區域的需求,可將方案進行更改,保證整體結構統一又各有特點。在樓體外觀的設計中加入符合當地人文特色的元素,使建筑物更具有中國特色。應用概念設計法時加強后期的優化工作,注重從宏觀到細致的過渡,設計方案要具有靈動性,應對施工進展過程中的突況工程師要及時進行探討,對原有結構做出更改,保障施工連續進展。設計測量工作中會涉及到很多變量,對這些數據進行反復測量,確定合理的浮動范圍,作為施工開展的有力依據。

        2結構選型的問題

        2.1結構的超高。在抗震規范與高規中,對結構的總高度都有嚴格的限制,尤其是新規范中針對以前的超高問題,除了將原來的限制高度設定為A級高度的建筑外,增加了B級高度的建筑。因此,必須對結構的該項控制因素嚴格注意,一旦結構為B級高度建筑甚至超過了B級高度,其設計方法和處理措施將有較大的變化。在實際工程設計中,出現過由于結構類型的變更而忽略該問題,導致施工圖審查時未予通過,必須重新進行設計或需要開專家會議進行論證等工作的情況,對工程工期、造價等整體規劃的影響相當巨大。

        2.2控制柱的軸壓比與短柱問題。在鋼筋混凝土高層建筑結構中,往往為了控制柱軸壓比而使柱的截面很大,而柱的縱向鋼筋卻為構造配筋。即使采用高強混凝土,柱斷面尺寸也不能明顯減小。限制柱的軸壓比是為了使柱子處于大偏壓狀態,防止受拉鋼筋未達屈服而混凝土被壓碎。柱的塑性變形能力小,則結構延性就差,當遭遇地震時,耗散和吸收地震能量少,結構容易被破壞。但是在結構中若能保證強柱弱梁設計,且梁具有良好延性,則柱子進入屈服的可能性就大大減少,此時可放松軸壓比限值。

        3結構計算與分析

        3.1計算模型的選取。對于常規結構,可采用樓板整體平面內無限剛假定模型;對于多塔或錯層結構,可采用樓板分塊平面內無限剛模型;對于樓板局部開大洞、塔與塔之間上部相連的多塔結構等可采用樓板分塊平面內無限剛,并帶彈性連接板帶模型;而對于樓板開大洞有中庭等共享空間的特殊樓板結構或要求分析精度高的高層結構則可采用彈性樓板模型。在使用中可根據工程經驗和工程實際情況靈活應用,以最少的計算工作量達到預期的分析精度要求,既不能不分情況一概采用剛性樓板模型,造成小墻肢計算值偏小,不安全;也沒必要都采用彈性樓板模型,無謂地增大計算工作量。

        3.2抗震等級的確定。對常規高層建筑,可按《高層建筑混凝土結構技術規程》(JGJ3-2002,J186-2002)第4.8節規定確定抗震等級,與主樓連為整體的裙樓的抗震等級不應低于主樓的抗震等級;對于復雜高層建筑還應符合第10章的規定;對于地下室部分,當地下室頂板作為上部結構的嵌固部位時,地下一層的抗震等級應與上部結構相同,地下一層以下的抗震等級可根據具體情況采用三級或更低等級。

        3.3非結構構件的計算與設計。在高層建筑中,往往存在一些由于建筑美觀或功能要求且非主體承重骨架體系以內的非結構構件。對這部分內容尤其是高層建筑屋頂處的裝飾構件進行設計時,由于高層建筑地震作用和風荷載較大,必須嚴格按照新規范中增加的非結構構件的處理措施進行設計。

        4結論

        第5篇:混凝土結構論文范文

        1.1氣泡問題

        公路工程結構物混凝土外觀存在的常見質量問題為氣泡?,F今的公路工程施工技術無法做到對此問題完全避免。氣泡外觀問題產生的主要原因為:在混凝土的振搗中,施工力度偏弱,澆筑厚度缺乏科學合理性或是在進行拌合操作時,未對相應的坍落度進行有效控制。氣泡外觀問題作為混凝土外觀問題中最為主要且常見的一大問題,對其實行必要有效的控制措施,極為重要且關鍵。

        1.2粘膜問題

        有部分公路工程在施工中,混凝土表面在完成粘膜施工后悔簇擁那種缺損問題。粘膜問題的產生對整個混凝土的外觀質量造成了極為不利的影響,還可能會對整個結構物的內部結構質量產生不利影響。粘膜問題的產生原因為:在對公路工程進行澆筑操作時,整個混凝土的下落距離未控制在科學范圍內,存在過大的問題。從而致使混凝土在掉落至地面后,又反濺于模板之上。或是施工中機械設備存在故障,無法及時進行澆筑操作,或是中間暫停時間偏長,致使混凝土材料出現逐漸硬化的問題,最終導致粘膜問題產生。另外,公路工程施工作業時,整個氣候環境較為惡劣,溫度偏高,致使脫模在經過陽光直射后,在較短的時間內發散,繼而出現粘膜問題。粘膜問題的產生因素多種多樣,模板的表面光滑度問題也是一大影響因素。

        1.3露筋問題

        露筋問題主要是指混凝土結構物內部的受力筋未完全被混凝土所覆蓋,出現外露問題,嚴重影響了鋼筋與混凝土的握裹,無法將應力進行充分傳遞。極易導致鋼筋因缺乏必要的混凝土保護而出現銹蝕問題,影響整個結構物的安全性及使用壽命。露筋問題產生的主要原因為:在進行混凝土澆筑施工時,振搗工具與鋼筋相接觸發生碰撞,整個鋼筋墊受到影響而發生移位,在拆模后便出現露筋問題。結構物的斷面太小,而鋼筋的密集性又較高,一些石子卡于鋼筋之上,混凝土泥漿無法充分覆蓋整個鋼筋周邊,暴露區域便產生露筋問題。材料配合比失常致使混凝土內部發生離析顯效,模板出現嚴重漏漿問題。

        1.4表面裂紋

        在結構物混凝土的表面出現一些成網狀,較為淺細的裂縫,其花紋表現為六角形,具體深度范圍為5~10mm。裂紋外觀質量問題產生的主要原因為:在對混凝土實施灌注操作時,受到溫度、陽光照射、濕度等氣候環境變化因素的影響?;蚴钦麄€公路工程地基出現不均勻的沉降問題,拆模操作實施時間過早等也會知識混凝土出現裂紋問題。這些外觀質量問題都是在公路工程施工中較為常見的問題,對其采取必要科學的控制措施,具有極為重要的意義。

        2公路工程結構物混凝土外觀質量控制措施

        2.1氣泡問題的控制措施

        在選取相關拌合設備時應盡可能地選取具有自動計量裝置的設備。在拌合操作前,對設備的計量裝置進行實驗認證,確保其計量準確性。對外加劑進行計量時,應選取小臺秤,并提前進行稱重操作。對混凝土的坍落度進行嚴格控制。如在進行拌制施工時,需依照砂料的含水量對水灰比進行調整,從而有效減少氣泡產生。在拌制及澆筑施工地點進行坍落度的檢查,及時運用拌合物,避免延長其停放時間,從容有效減少坍落度損失。

        2.2模板問題的控制措施

        在進行模板選擇時,選取一些富有豐富經驗及較強實力的廠家進行加工操作。在模板進場前對其進行嚴格檢驗,對鋼板的尺寸、焊縫平整度拼縫精度等進行嚴格控制。依照結構物的尺寸大小進行模板設計,運用鋼模替代木模。在裝模操作前,可運用小砂輪對其進行除銹處理,擦凈后涂抹機油。整個模板內部應保證不存在雜物或是污點。確保模板的牢固性,對其接縫的拼裝嚴密性進行嚴格檢查,接縫應保持在2mm上下,運用雙面型泡膜膠完全密封操作,避免出現漏漿問題。新模板還需對其進行打磨處理。對于模板材料的運用應盡遵循隨立隨用原則,避免其產生不必要的砂線、銹斑。

        2.3露筋問題的控制措施

        對墊塊進行穩固處理,在水泥砂漿墊上放入鐵絲,將其綁于鋼筋之上,從而有效避免位移現象出現。在振搗操作中避免振搗棒與鋼筋發生碰撞。對于石子的選擇,應確保其粒徑大小應保持在整個結構物截面最小尺寸的四分之一以內及鋼筋凈距的四分之三以內。對于一些存在嚴重露筋問題的部位,需指定專業方案對其進行修補。通常所采取的修補方法為:將露筋上的混凝土殘留物及銹跡清除,運用水對其實行沖潤操作,之后再運用1∶2或是1∶2.5的泥漿進行平抹操作,對其進行養護。

        2.4裂紋問題的控制措施

        針對裂紋問題采取的措施主要為加強混凝土的養護。對于已澆灌完的混凝土進行早期完善的養護,避免出現干縮問題。在冬季進行施工時,加強養護操作避免冷縮型裂縫的產生。進一步加強施工管理工作力度,結合實際施工條件采取科學的施工措施。針對一些細小裂縫,可在沖洗后,采用泥漿進行平抹修補;如為大面積裂縫,可在將其薄弱區域鑿除之后,在進行沖洗及泥漿平抹操作。

        2.5施工材料及相關配合比的質量控制

        在進行混凝土施工操作時,需對其原材料的質量及骨料的粗細量進行科學嚴格的控制。在進行原材料的選取時,需選取一些完全符合科學配合比標準的材料,對不符合相關標準的材料進行篩除處理。依規范進行混凝土的材料配合比實驗,盡可能地選取出完全符合規范的合理級配,從而為骨料的粗細度合理配比提供保障。在進行水灰比的明確時,應將多次實驗的結果作為基礎依據。在進行了反復對比研究之后,選取其中最為優質的比例方案。如果在一些氣候環境惡劣條件下進行工程的施工作業,還需對氣候因素給予混凝土外觀質量的影響進行全面充分的考量,盡可能地將不利影響降到最低。較為科學的配合比選擇是:采用施工現場實際運用的材料進行混凝土的配合比設計。而所選取的混凝土材料,在保證其質量的前提下,盡可能地選取一些色澤度較為同等的砂、石、水泥。

        3結語

        第6篇:混凝土結構論文范文

        鋼筋混凝土水池根據用途、結構、建造位置、形狀、施工方法、配筋方式等有多種分類.水池的池壁也有多種結構形式,根據荷載分布情況可分為變厚池壁和等厚池壁,等厚池壁還可分為圓形與矩形,二者區別在于體積大小,前者容量200m3左右,后者200-1000m3,變厚池壁則主要適用于容量>1000m3的水池.根據用途和施工工藝,水池的池底也有諸如倒球殼、倒錐殼等多個復雜形式.水池承受荷載豎向有池頂與池底荷載兩種,水平則為池壁荷載,具體示意圖見圖2.像池頂荷載計算時需要注意活荷載與雪荷載取最大值的篩選準則.池底何在相對整體式地板而言,荷載計算為地下水浮力與地板承受地基反力,效果為底板中產生彎矩與剪力.除去上述荷載之外,對水池結構產生影響的作用力還有諸如溫度、濕度與地震作用等.溫度與濕度的變化會導致混凝土膨脹或收縮變形,產生附加應力,也稱為溫度或濕度應力,導致這種應力產生的原因為水池內外溫度與濕度的差異.地震作用會破壞水池結構,所以設計時需鹽酸水平地震作用,從而達到良好的抗震效果,低于一定烈度下的地震作用.設計時目前多以7度、8度以下地震烈度為考量,多選擇地面式或者地下式水池,對于有頂蓋的矩形水池著重采取抗震構造措施.在地震烈度>8度時除去考慮水平地震效應外,還必須考慮豎向地震作用影響,通過平方與開平方的方法計算組合獲得結果.目前水池的荷載計算主要方式主要依據池內有無滿水、池外有無土進行組合計算.

        2混凝土水池設計

        在分析完混凝土水池荷載情況之后,在水池結構設計時需要考慮這些荷載作用.下面我們以矩形鋼筋混凝土水池為例做結構設計分析.首先,完成長高比池壁的計算假定.側向荷載作用下,水池不同長高比受力情況有所差異,根據池壁單向與雙向受力情況做劃分。水池結構的布置要符合設計原則,像矩形水池均為長方形,布置時要考慮地形.基礎形式為擋土墻水池基礎多采用池壁下設置帶形基礎,地板采用鋪砌式結構,地板做成整體式,水池基礎為水平框架式和雙向板式.伸縮縫的設置上要考慮建造位置,比如土基中矩形水池,伸縮縫間隔情況如下:普通≤20m,溫度區間段≤20m,巖基中間隔≤15m;比如建造在土基中的鋼筋混凝土矩形地下式水池,伸縮縫間隔情況如下:普通≤30m,巖基中間隔≤20m.水池池壁結構形式的選擇情況如下:開敞式水池宜選擇變厚池壁,池底厚度為池壁的1.5倍;擋土墻式選擇等厚池壁;水平框架式池壁選擇變厚池壁.遵照以上設計原則,水池的結構設計將會保持合理性與穩定性,利于施工.

        3鋼筋混凝土水池施工要點

        鋼筋混凝土水池施工中要注意施工縫、混凝土澆筑與養護等施工要點.像施工縫,在底板澆筑完成后,池壁與底板的施工縫要在八字以上1.5m與2m處,底板和柱的施工縫在表面.池壁豎向澆筑要一次澆到施工縫處,并對柱身、柱帽等做兩次澆筑,以確保穩定性.對施工縫還要做鑿毛處理,將不密實表面或者浮漿鑿掉,還要避免損及混凝土棱角,避免剔出粗集料.鋼筋綁扎時可使用板凳筋做法或者排架法.混凝土澆筑過程中要保持池壁模板的穩定,避免變形或硬化失敗.至于施工縫要提前清理,保持合理濕潤度,在澆筑前鋪與混凝土配比相同的水泥砂漿,澆筑部分分層完成,每層厚度≤4m,間隔時間不宜過長,均勻攤鋪.在澆筑頂部時,要暫停1h,在混凝土下沉后做二次震動,消除可能因沉降造成的裂縫,澆筑完成后及時灑水養護.養護根據季節不同有不同注意要點,比如夏季因高溫干燥或者多雨等混凝土強度會受影響出現收縮裂縫后,必須在初凝后聯系養護兩周才能拆模,養護期間還要及時灑水,保證濕潤到位.完成養護拆模時表面還要添加超時的覆蓋層,及時回填土,保證混凝土水池的施工質量.

        4鋼筋混凝土水池施工實例分析

        我們以某公司社區配套設施工程污水處理廠污水池土建工程為例分析下施工情況.污水池長22.5m、寬13.8m,設計絕對標高24.8m,基礎底標高-3.17m,基礎墊層砼強度等級C10,池體砼強度等級為C25.S6,抗震等級6度.施工前做好現場技術準備與現場準備,尤其是現場準備,標高點根據現場引測的±0.000測定標高,做好鋼筋型號抽樣檢驗,器具提前進場,尤其是雨天施工做好現場準備.下面我們以鋼筋施工與模板施工兩大要點為例進行分析.鋼筋施工是水池施工重點,鋼筋要根據施工要求對型號進行選擇,對加工尺寸進行核對,所選用鋼筋必須保證提前做好清潔,表面無損傷與銹蝕,不使用帶顆粒狀的老銹鋼筋.至于鋼筋彎折與彎鉤,要根據鋼筋等級分類確定彎折標準,比如Ⅰ級鋼筋末端180°彎鉤,圓弧彎曲半徑≥直徑2.5倍,平直部分長度≥直徑3倍,彎曲加工時φ10以下按配料單尺寸做彎曲點標志.粗鋼筋及復雜形狀鋼筋彎曲時,要標明彎曲點位置,工作臺上標明彎曲控制點,做好偏差控制.比如箍筋的內凈尺寸允許偏差為±5㎜,彎起鋼筋的彎曲位置允許偏差為±20㎜,根據彎曲情況確定允許偏差,確保其合用.柱鋼筋安裝中要按照給出位置線進行綁扎,控制好間距,根據污水池情況計算好間距與鋼筋數量,鋼筋箍筋接頭綁扣以八字形為主,箍筋與主筋保持垂直,箍筋與柱角筋做雙扣綁扎,板鋼筋安裝前要做好模板清理,按照畫線—綁板受力鋼筋—綁負彎距鋼筋及角筋的順序完成施工,確定好主筋分布筋間距后按照先受力鋼筋后分布筋的順序進行安裝,綁扎時距梁邊距為50㎜,綁扎負筋時要中間加Ф8間距1個/㎡的鋼筋馬凳,以確保上部鋼筋的位置.安裝完成后要做好質控驗收,做成分檢驗與專項檢驗確保施工效果,保證鋼筋綁扎符合施工要求.模板制作要根據污水池施工現場進行加工配置,從尺寸、型號到數量做好標記,按照放線-搭設支模架-安裝墻壁模板-安裝板底模-安裝柱節點模順序完成施工.放線時要注意根據墊層、板面和基礎情況做好測量標記,方便放線.根據污水池施工要求,支模架搭設間距為800×800,水平桿設置距地分別為300㎜、1500㎜,擰緊縱橫桿與剪刀撐;墻壁模板安裝中可采用50×100木方子、直徑10㎜對拉螺栓做加固,螺栓中間加焊止水環和鋼筋頂托,防漏水和混凝土澆筑時截面變??;板底模安裝中要確保穩固不下沉,做抄平檢查,模板板縫采用膠帶粘貼,復核模板面標高和板面平整度、拼縫、預埋件和預留洞的準確性;最后安裝柱節點模,做加固密封,防止漏漿.安裝完成后要進行自檢,再進行后續施工.

        第7篇:混凝土結構論文范文

        【關鍵詞】鋼筋混凝土;框架結構;計算簡圖

        1 前言

        20世紀90年代以后,隨著我國鋼材量的不斷提高,鋼一混凝土組合結構在建筑行業得到了迅速發展,隨著建筑造型和建筑功能要求日趨多樣化,無論是工業建筑還是民用建筑,在結構設計中遇到的各種難題也日益增多,因而作為一個結構設計者需要在遵循各種規范下大膽靈活的解決一些結構方案上的難點、重點。

        2 框架結構方案構思時應考慮以下幾點

        2.1 結構的傳力路線應簡捷明了。在荷載作用下,結構的傳力路線越短、越直接,結構的工作效能越高,'所耗費的建材也就越少。

        2.2 從力學觀點看,在民用和公共建筑的平面布局中,應當盡量使柱網按開間等跨和進深等距(或近似于等距)布置,這樣可以相應減少邊跨柱距,也可以充分利用連續梁的受力特點以減少結構中的彎距,可以使各跨梁截面趨于一致,而提高結構的整體剛度。

        2.3 結構方案還應結合工程地質情況和建筑功能要求綜合考慮。

        3 應從概念設計上著手注意幾個問題

        3.1 關于強柱弱梁節點。這是為了實現在罕遇地震作用下,讓梁端形成塑形鉸,柱端處于非彈性工作狀態,而沒有屈服,但節點還處于彈性工作階段。強柱弱梁措施的強弱,也就是相對于梁端截面實際抗彎能力而言柱端截面抗彎能力增強幅度的大小,是決定由強震引起柱端截面屈服后塑性轉動能否不超過其塑性轉動能力,而且不致形成"層側移機構",從而使柱不被壓潰的關鍵控制措施。柱強于梁的幅度大小取決于梁端縱筋不可避免的構造超配程度的大小,以及結構在梁、柱端塑性鉸逐步形成過程中的塑性內力重分布和動力特征的相應變化。因此,當建筑許可時,盡可能將柱的截面尺寸做得大些,使柱的線剛度與梁的線剛度的比值盡可能大于1,并控制柱的軸壓比滿足規范要求,以增加延性。驗算截面承載力時,人為地將柱的設計彎距按強柱弱梁原則調整放大,加強柱的配筋構造。梁端縱向受拉鋼筋的配筋不得過高,以免在罕遇地震中進入屈服階段不能形成塑性鉸或塑性鉸轉移到立柱上。注意節點構造,讓塑性鉸向梁跨內移。

        3.2 關于"強剪弱彎"措施:強剪弱彎是保證構件延性,防止脆性破壞的重要原則,它要求人為加大各承重構件相對于其抗彎能力的抗剪承載力,使這些部位在結構經歷罕遇地震的過程中以足夠的保證率不出現脆性剪切失效。對于框架結構中的框架梁應注意抗剪驗算和構造,使其滿足相關規范要求。

        3.3 注意構造措施。

        3.3.1 對于大跨度柱網的框架結構,在樓梯間處的框架柱由于樓梯平臺梁與其相連,使得樓梯問處的柱可能成為短柱,應對柱箍筋全長加密。這一點,在設計中容易被忽視,應引起重視。

        3.3.2 對框架結構外立面為帶形窗時,因設置連續的窗過梁,使外框架柱可能成為短柱,應注意加強構造措施。

        3.3.3 對于框架結構長度略超過規范限值,建筑功能需要不允許留縫時,為減少有害裂縫(規范規定裂縫寬度小于0.3mm),建議采用補償混凝土澆筑。采用細而密的雙向配筋,構造間距宜小于150mm,對屋面宜設置后澆帶,后澆帶處按構造措施宜適當加強。

        3.3.4其它構造措施限于篇幅,這里不再贅述,請詳見新規范。

        4 結構計算方面的問題

        4.1 計算簡圖的處理

        結構計算中,計算簡圖選取的正確與否,直接影響到計算結果的準確性,其中比較典型的是基礎梁的處理。一般情況下,基礎梁設置在基礎高度范圍內,作為基礎的一部分,此時結構的底層計算高度應取基礎頂面至一層樓板頂面的高度?;A梁僅考慮承擔上部墻體荷載,構造滿足普通梁的要求即可。當按規范要求需設置基礎拉梁時,其斷面和配筋可按構造設計,截面高度取柱中心距的1/12~1/18,縱向受力鋼筋取所連接的柱子的最大軸力設計值的10%作為拉力來計算。但是,當基礎埋深過大時,為了減少底層的計算高度和底層的位移,設計者往往在±0.000以下的某個適當位置設置基礎拉梁。此時,基礎拉梁應作為一層輸入,底層計算高度應取基礎頂面至基礎拉梁頂面的高度,二層計算高度應取基礎拉梁頂面至一層樓板頂面的高度。拉梁層無樓板,應開洞處理,并采用總剛分析方法進行計算?;A拉梁截面及配筋按實際計算結果采用。若因此造成底層框架柱形成短柱,應采取構造措施予以加強。另一個需要注意的是,當框架結構的電梯井道采用鋼筋混凝土井壁時(設計時應盡量避免),計算簡圖一定要按實際情況輸入,否則可能會造成頂部框架柱設計不安全。

        4.2 結構計算參數的選取

        4.2.1 設計基本地震加速度值

        《建筑抗震設計規范》(GB50011一2001)中規定:抗震設防烈度為7度時,設計基本地震加速度值分別為0.1g和0.15g兩種,抗震設防烈度為8度時,設計基本地震加速度值分別為0.2g和0.3g兩種,這與89規范差別較大。計算中應嚴格注意地震區的劃分,選取正確的設計基本地震加速度值,這一項對地震作用效應的影響極大。

        4.2.2 結構周期折減系數

        框架結構由于填充墻的存在,使結構的實際剛度大于計算剛度,計算周期大于實際周期,因此,算出的地震作用效應偏小,使結構偏于不安全,因而對結構的計算周期進行折減是必要的。折減系數可根據填充墻的材料及數量選取0.7~0.9。

        4.2.3 梁剛度放大系數

        SATWE或TAT等計算軟件的梁輸入模型均為矩形截面,未考慮因存在樓板形成T型截面而引起的剛度增大,造成結構的實際剛度大于計算剛度,算出的地震剪力偏小,使結構偏于不安全。因此計算時應將梁剛度進行放大,放大系數中梁取2.0、邊梁取1.5為宜。

        4.2.4 活荷載的最不利布置

        多層框架,尤其是活荷載較大時,是否進行活荷的最不利布置對計算結果影響較大。即使選用程序中給定的梁設計彎矩放大系數,也不一定能反映出工程的實際受力情況,有可能造成結構不安全或過于保守??紤]目前的計算機計算速度都比較快,作者建議所有工程都應進行活荷載的最不利布置計算。

        4.3 獨立梁箍筋計算結果需復核

        《混凝土結構設計規范》(GB50010-2002)中規定:對集中荷載作用下的獨立梁,應按公式進行計算,且集中荷載作用點至支座間的箍筋,應均勻配置。但SATWE軟件計算梁箍筋時,未考慮獨立梁這一情況,都按公式 進行計算,有時會造成計算結果偏小,設計中若遇到有獨立梁存在的情況,應對梁箍筋的計算結果進行手算復核。

        5 設計構造方面的問題

        5.1 框架節點核芯區箍筋配置應滿足要求對于規范中規定的框架柱箍筋加密區的箍筋最小體積配箍率的要求,絕大部分設計人員都能給予足夠的重視,但對于《建筑抗震設計規范》(GB50011-2001)中規定的"一、二、三級框架節點核芯區配箍特征值分別不宜小于0.12、0.10、0.08且體積配箍率分別不宜小于0.6%、0.5% ,0.4%。"設計中經常被忽視,尤其是柱軸壓比不大時,常常不滿足要求。這一規定是保證節點核芯區延性的重要構造措施,應嚴格遵守。

        5.2 底層框架柱箍筋加密區范圍應滿足要求建筑抗震設計規范》(GB50011-2001)中規定:"底層柱,柱根處箍筋加密區范圍為不小于柱凈高的1/3"這是新增加的要求,設計中應重點說明

        5.3 框架梁的縱向配筋率應注意

        《建筑抗震設計規范》(GB50011一2001)中規定:"當框架梁梁端縱向受拉鋼筋配筋率大于2%時,梁箍筋最小直徑的數值應比表6.3.3中規定的數值增大2mm。"在目前設計中,這一規定常被忽視,造成梁端延性不足。

        5.4 框架梁上部縱筋端部水平錨固長度應滿足要求

        《混凝土結構設計規范》(GB50010-2002)中規定:"框架端節點處,當框架梁上都縱筋水平直線段錨固長度不足時,應伸至柱外邊并向下彎折,彎折前的水平投影長度不應小于0.4LaE。" 當框架柱截面尺寸小于400×400mm時,應注意梁上部縱筋直徑的選擇,否則這一項要求不容易得到保證。

        第8篇:混凝土結構論文范文

        關鍵詞:建筑工程;混凝土結構;問題;對策

        中圖分類號:TU198文獻標識碼: A

        前言

        近年來在我國建筑行業的發展過程中,混凝土結構設計作為其中重要的內容,它的質量問題不僅對建筑結構的穩定性和可靠性有著嚴重的影響,還使得建筑物的功能無法得到充分的發揮。因此我們在對建筑混凝土結構設計時,就要對設計技術進行嚴格要求,只有這樣才能使得工程施工的質量得到進一步的保障。但從當前我國建筑工程混凝土結構設計的實際情況來看,其中還存在著許多的問題,這就對建筑結構的穩定性有著嚴重的影響,因此我們就需要采用相應的技術手段,來對其進行處理,從而保障建筑工程的施工質量。

        1、關于結構計算與分析階段中的常見問題及處理對策

        混凝土結構設計中計算與分析階段的常見問題。目前的工程建設中,大都是通過計算機軟件進行結構設計等工作,這樣不僅使得建筑混凝土結構設計的準確性和可靠性得到進一步的保障,還滿足了現代化建筑結構設計的相關要求。但在不同的建筑工程施工項目中,其軟件系統的應用效果也就存在著一定的差異,因此我們在建筑設計階段中,就需要根據工程施工的實際情況,對混凝土結構設計計算和分析方式進行相應的分析,從而保障建筑工程的施工質量。

        設計師們在對建筑混凝土結構進行設計的過程中,除了要對計算軟件的特點進行相應的比較研究以外,還要對建筑設計的相關內容進行全面了解,從而根據工程施工的實際情況,采用相應的技術手段對其進行處理,以確保工程的施工質量。而且在施工的過程中,設計人員也要根據工程施工的相關要求,對混凝土結構的尺寸大小進行嚴格的控制,并采用相應的設計技術方法對其進行處理,以確保建筑混凝土結構的質量和強度得到有效的控制。

        我們還要對施工材料的質量進行有效的控制,以避免在建筑混凝土結構設計的過程中,其質量無法滿足工程設計的相關要求。高層建筑結構設計原則。是高層建筑結構設計過程中需要注意的重要標準和準則。也是高層建筑設計單位提高高層建筑結構設計質量與效益的重要保障。只有在一定的高層建筑結構設計原則支持下。才可以進行建筑結構設計,總體來講。高層建筑結構設計原則主要包括以下幾點。

        建筑結構基礎方案需要配置完善的施工地質調查報告。最大程度的發揮建筑物地基的潛力。必要的情況下設計人員還需要對地基的變形做好相應的演算。另一方面。設計單位還需要對建筑物進行綜合性分析。尤其是對于建筑物負荷以及上部結構類型。通過對這些綜合性分析。最終選定最適合的基礎方案。從而可以在提高設計質量的基礎上提高設計單位經濟效益。一條基本原則是設計單位經常忽略的。那就是結構措施完善原則。設計單位在進行建筑物結構的設計時。 需要注意結構組件的延展性。例如建筑物中鋼筋的錨固長度等。同時。設計單位還需要注意建筑物薄弱環節以及建筑物本身溫度對于建筑物組件的影響。對于這兩方面的問題。在實際的設計過程中。需要遵循$強柱弱梁%強剪弱彎以及強壓弱拉&的基本原則。只有這樣才可以提高高層建筑結構設計的安全性以及牢靠性。

        2、關于混凝土結構設計中,地基與基礎設計中常見問題及處理對策

        在建筑工程施工中,基礎結構的設計有著十分重要的意義,這也是保障混凝土結構施工質量的主要內容。但是我們在對其地基基礎結構進行施工的過程中。其建筑物時常會出現沉降的現象,這就對建筑結構的穩定性和可靠性有著一定的影響。而且如果其基礎結構的穩定性存在著一定的問題,還可能會破壞了建筑基礎底板的質量,為此我們就需要采用相應的技術手段來對其進行處理,從而保障建筑結構的穩定性。

        針對不同程度的沉降量的工程,地基與基礎設計所采取的處理措施也是不同的。對于沉降量相對較小的工程,可以采用褥墊的方法處理,也就是說在地下室與持力層之間建筑一層保護帶,在沉降作用發生時,保護層會承受一部分的附加應力,防止地下室地板因受力過度而開裂或沉降。同時,對天然地基也起到了養護的作用。這樣,地基保養便從根本上達到了解決。對于有地下室的建筑,地下水的季節性變化也是影響地下室底板的重要因素。當降水期來臨,地下水位升高。底板的防水設計得尤為重要。一般的地下室建筑,由于柱下承臺的形式比較復雜,其基槽地膜形狀也是較為繁復的,建筑復雜的外在輪廓一方面加大了防水設計的難度,另一方面,增加了工程造價。很多設計工程師僅僅考慮到建筑物當時當地的地理狀況,忽視對降水這一因素的考慮,而導致在地下室底板設計時對防水工程的不全面。不科學。在室外地坪之下的結構部分,外輪廓形狀設計應盡量簡潔,這樣有利于建筑防水的施工。另外,在具體的設計方略上,采用統一地下室底板和柱下承臺的下標高的反承臺法。這一方法的具體做法:在地下室內部做濾水層和覆土,同時對柱下承臺進行加厚工程的設計。這樣一來,基槽地膜形狀變得簡單,方便施工,縮短了施工時間,從而施工質量也可以得到保證。.

        3、關于混凝土上部結構設計中常見問題及處理對策

        混凝土上部結構設計中常見的問題解決混凝土上部結構設計中常見問題的對策。由于建筑結構設計過程中難免會需要反復的修改。所以在設計之前很有必要將相應的準備工作做好。進行設計更改的時候。也能有一個調整的余地。一般常用的方法是對結構設計進行建模計算。通過計算機將結構設計中容易出現了問題進行一個周密的預測和估算。在上部結構設計階段,要考慮建筑物的抗震功能,當遇到中震時,我們應考慮第一級別的剪力墻。在建筑結構設計中。要保障建筑工程的質量。要使得工程造價控制在可接受范圍內)這就需要在建筑結構設計上充分考慮投資商的經濟效益。

        權衡建筑質量和投資回報之間的重要性)所以在設計時。應該盡量的優化結構設計。要始終牢記強柱弱梁強剪弱彎強壓弱拉原則。具體來說。設計時要注意測試地基的抗壓性%檢查支撐架的穩定性%控制鋼筋的錨固氏度等方面。只有這樣才能使得建筑結構設計的最終效果令人滿意。在進行建筑結構的設計之前。必須要和承包商投資商有一個全面和諧的溝通過程。主要是來討論建筑結構的類型以及施工的具體要求。 這樣將會有利于設計人員充分了解本次建筑工程的施工基調。對整個建筑工程的結構設計思路有一個明確的方向。 對于不同的基礎形式,所出現的問題和解決辦法也各不相同。常見問題如下:對于地下車庫中的柱下獨立基礎,基礎埋深的計算方法因各地方基礎規范有不同的規定,對基礎底面積大小影響較大。當地庫底板厚度滿足一定要求的情況下,獨立基礎的埋深可取自室外地面及室內地面計算埋深的平均值。對于平板筏板基礎,上部結構剛度、板底地基土的基床系數等都對筏板的計算有一定影響。設計時應將上部結構剛度傳給基礎,考慮基礎與上部結構的共同作用,并合理選取基床系數,有效降低基礎工程量。另外,基礎底板及地下室的外輪廓應盡量簡潔,有利于防水工程的施工和降低造價。

        結束語

        總而言之,在當前我國建筑混凝土結構設計中存在的問題還有很多,這不僅對混凝土結構的穩定性和可靠性有著嚴重的影響,還降低了建筑工程的效益,因此我們就需要的采用相應的技術手段來對其進行處理,從而保障建筑工程的施工質量。

        參考文獻:

        [1]混凝土結構設計規范(GB500010-2002北京.中國建筑工業出版社.

        第9篇:混凝土結構論文范文

        (1.青島理工大學藍色經濟區工程建設與安全協同創新中心山東青島266000;

        2.青島理工大學土木工程學院山東青島2660330)

        【摘要】疲勞對士木工程結構,特別是被廣泛應用的鋼結構和混凝土結構具有嚴重危害,一直以來受到廣泛關注。研究鋼筋混凝結構的疲勞效應問題,預測其剩余壽命,對于保障在役結構的安全使用具有重要意義。本文介紹了混凝土材料的疲勞性能、鋼筋混凝土結構的受彎疲勞性能和損傷鋼筋混凝土梁疲勞性能的研究現狀,并通過總結分析了目前已有研究中的不足,并針對當前研究中亟待解決的問題提出了看法。

        關鍵詞 疲勞性能;混凝土;強度

        【中圖分類號】TU375; TU528.0

        【文獻標志碼】A

        1. 前言

        (1)在實際工程應用中,像橋梁、吊車梁和海洋平臺等結構承受著反復荷載的作用,這些特殊而重要的結構在正常使用的情況下將承受反復變化的應力和應變作用,促使這些結構的力學損傷不斷累積,當損傷累積超過一定量后將會使這些承載結構發生低于靜載強度的脆性破壞或破損,即結構發生疲勞破壞。但疲勞問題長期以來一直未得到足夠的重視,使得混凝土結構的疲勞變成不可忽視的問題。

        (2)本文從混凝土材料的疲勞性能、鋼筋混凝土結構的受彎疲勞性能和損傷鋼筋混凝土梁疲勞性能等三個方面介紹了鋼筋混凝土結構的疲勞性能的研究現狀。

        2. 混凝土材料疲勞性能研究

        2.1混凝土抗拉疲勞性能研究現狀。

        從評定在循環荷載作用下結構對開裂的敏感性的角度來看,混凝土在純拉狀態下的疲勞性能非常重要。

        Tepfers[2]采用數字模擬的方法對立方體劈裂試驗結果進行處理,得出在受拉應力狀態下可采用與受壓應力狀態下較為相似的方程來表示:

        式中 fcsplm -混凝土靜力劈拉強度平均值;

        β -材料常數,可取為0.0685。

        Saito和Imai等[3]進行了純拉疲勞試驗,采用4Hz的加載頻率,試驗中最小應力和靜載抗拉強度 fctm的比值約為0.08,得出破壞概率p=0.5的S-N關系線的試驗結果可用下式表示:

        2.2混凝土抗壓疲勞性能研究現狀。

        抗壓性能是混凝土材料性能的重要指標,因此成為科研工作者的研究重點。關于這一方面的研究較多,研究成果也較多。

        (1) 混凝土單軸受壓疲勞性能研究現狀。

        Graf和Brenne等[4]通過混凝土的疲勞試驗研究了最小應力和應力范圍對其的疲勞強度的影響,同時給出了Goodman圖;Brenne和Muir等[5]利用立方體高強混凝土構件研究了高強混凝土的疲勞強度以及其退化規律;Holmen等[6]通過大量的試驗研究得出混凝土的疲勞特性和其疲勞壽命的概率分布。

        Matsushita[7]利用混凝土圓柱構件進行了大量的疲勞試驗,得出了混凝土疲勞壽命的概率分布,并通過線性回歸的方法分析出了考慮最小應力水平的S-N曲線關系式:

        lgN=17[(1-Smax)/(1-Smin)]+0.23

        (2)混凝土雙軸受壓疲勞性能研究現狀。

        Lan等[8]通疲勞試驗研究了板式混凝土構件在不同應力比下完全卸載和部分卸載兩種情況的疲勞雙軸受壓疲勞性能,得出兩種卸載方式下混凝土的疲勞性能相似,且與應力大小無關。

        大連理工大學[9]進行定側壓雙軸受壓疲勞試驗,定側壓比分別為0.25和0.50,試驗結果表明:定側壓的約束提高了混凝土的抗壓疲勞強度,縱向最大應變和最小應變的發展和單軸受壓情況下相似,也符合三階段規律,并綜合分析(考慮了側壓影響)出了統一的疲勞破壞準則方程:

        Smax=α-β(1-R)lgN

        其中:

        α=1+0.8304(δ2/fc) ,β=0.0638+0.115(δ2/fc) ; (0?δ2?fc?0.5)

        (3)混凝土三軸受壓疲勞性能研究現狀。

        關于混凝土三軸受壓疲勞試驗國內外研究資料較少,曹偉等[10]進行了定向側壓約束下三軸受壓疲勞試驗,試驗中試件的靜載破壞現象與疲勞破壞形態一樣,都是沿著縱向加載方向出現數條裂紋,符合三階段規律,但變形模量逐漸減小,得出了混凝土多軸受壓疲勞S-N統一方程,然而混凝土的三軸疲勞試驗操作復雜,試驗結果很難得出,結果的有效性難以得到確認,故現有的數據與資料只能作為參考。

        2.3混凝土壓-拉疲勞性能研究現狀。

        由于在壓拉循環應力狀態下的混凝土疲勞試驗對試驗儀器等要求較高等原因,因此目前對壓拉反復狀態下混凝土的疲勞試驗研究較少。

        Cornelissen[11]對混凝土試件進行了疲勞試驗,頻率為6Hz,結果表明最小壓應力的水平高時,疲勞壽命明顯降低,同時分別給出了引起受拉和受壓破壞的拉壓應力狀態下的S-N方程:

        (1) 受拉破壞:

        (2) 受壓破壞:

        大連理工大學的呂培印等[12]也進行了一些壓-拉疲勞試驗,在綜合考慮了最小、最大應力水平對疲勞的影響下,通過多元回歸線性分析法得到壓-拉情況下的S-N方程:

        lgN=12.02-10.64Smax-4.39Smin(Smin=0.1-0.2)

        其中:

        復相關系數為0.932,Smax 、 Smin對 lgN的偏相關系數分別為0.998和0.839,回歸誤差為0.046。

        3. 鋼筋混凝土梁受彎疲勞性能研究

        3.1鋼筋混凝土是一種復合材料,同時離散性又很大,所以對鋼筋混凝土梁受彎疲勞性能的研究是一項比較復雜的課題,但一直以來還是有許多學者對鋼筋混凝土梁受彎疲勞性能進行了一系列的研究。

        3.2目前國內外的研究重點主要都放在了等幅疲勞荷載作用下鋼筋混凝土梁的裂縫寬度、撓度、疲勞剛度的變化規律以及疲勞壽命的預測上。

        3.3H.A.馬達洛夫在文獻[13]中詳細介紹了在重復荷載作用下鋼筋混凝土受彎構件的疲勞性能的兩類問題:(1)鋼筋構造對鋼筋混凝土受彎構件的強度、裂縫形成和剛度的影響;(2)鋼筋混凝土結構疲勞計算理論的若干問題。

        3.4沈忠斌[14]和朱曉東[15]通過對11根鋼筋混凝土受彎構件在疲勞荷載作用下的試驗結果分析,得出了其裂縫寬度和撓度的變化規律和機理,建立了疲勞荷載作用下裂縫寬度和撓度的計算模式,同時給出了鋼筋混凝土受彎構件在疲勞荷載作用下裂縫寬度和撓度的計算公式。

        3.51990年,石小平等[16]進行了混凝土梁彎曲疲勞試驗,通過對所得的試驗數據進行分析得出混凝土彎曲疲勞壽命的概率分布基本符合兩參數Weibull分布,并同時分析了應力比對疲勞性能的影響,并建立了相應的疲勞方程;

        3.61991年,Byung[17]通過混凝土梁的彎曲疲勞試驗得出S-N曲線并得出疲勞強度方程,并驗證了在給定的應力水平下疲勞壽命分布符合Weibull分布,同時研究了混凝土在變幅疲勞荷載作用下的損傷累積理論。

        4. 損傷鋼筋混凝土梁疲勞性能研究

        (1)目前我國的大部分鋼筋混凝土梁橋都已服役相當長的時間,主要承重構件均有著各種各樣的損傷(銹蝕、腐蝕)情況,所以對損傷鋼筋混凝土梁的疲勞性能進行研究具有十分重要的實際意義,國內外對此也進行了一系列研究。

        (2)同濟大學的李士彬[18]利用13根銹蝕鋼筋混凝土梁進行了等幅疲勞試驗研究,通過分析認為在等幅荷載作用下,銹蝕梁的疲勞壽命比未銹蝕梁的疲勞壽命有明顯降低,同時在相同的荷載的水平下,銹蝕梁的疲勞壽命隨銹蝕率呈指數函數下降。銹蝕鋼筋混凝土梁銹蝕率越高,剛度隨荷載循環次數的增加衰減的速率越大。

        (3)華僑大學的宋小雷[19]利用18根銹蝕程度不同的鋼筋混凝土梁進行了靜力和疲勞性能試驗研究,研究結果表明,鋼筋混凝土梁的銹蝕率越高,鋼筋混凝土梁的疲勞壽命就越短,同時還得出了促使鋼筋混凝土梁的疲勞性能降低的重要原因是鋼筋與混凝土之間的粘結力下降和因銹蝕而導致鋼筋表面形成的銹坑和疲勞應力之間的耦合作用。

        (4)桂林理工大學的虞愛平[20]利用9根銹蝕程度不同的鋼筋混凝土梁進行了疲勞性能以及疲勞后剩余承載力的試驗研究,試驗結果表明,銹蝕率越高的鋼筋混凝土梁的耐久性越差、疲勞性能越低。

        (5)浙江大學的徐沖[21]利用四組不同(正常構件、正常加固、銹蝕損傷加固和超載損傷加固)的鋼筋混凝土梁進行了靜力和疲勞性能試驗研究,試驗結果表明,在循環荷載作用下說明鋼筋混凝土梁的整體剛度的重要指標是動撓度,且影響這一指標的兩個重要因素是加固形式和加固前的損傷情況。

        (6)大連理工大學的王海超等[22]利用8根腐蝕鋼筋混凝土梁進行了腐蝕后鋼筋混凝土梁的靜力和疲勞性能試驗研究,試驗結果表明,較低水平的腐蝕對鋼筋混凝土梁的靜力性能影響很小,但對鋼筋混凝土梁的疲勞壽命影響較大。

        (7)中南大學的趙亞敏[23]利用ANSYS等軟件,以鋼筋混凝土簡支梁橋和拱橋為模型研究了其在超載情況下的疲勞性能,研究結果表明,超載對鋼筋混凝土簡支梁橋和拱橋的疲勞性能影響非常大,在一般情況下,超載的荷載增加一倍,鋼筋混凝土梁的疲勞損傷增加將近10倍。

        5. 結束語

        目前雖然對鋼筋混凝土結構的疲勞性能進行了大量的研究,但是仍然存在著許多問題:

        (1)疲勞試驗影響因素多,離散性較大,而試驗構件數量往往有限,無法從不同截面尺寸、不同配筋率、不同應力水平、不同應力比等方面對的鋼筋混凝土結構進行疲勞分析和試驗研究;

        (2)由于在實際結構中,構件承受的都是變幅荷載和隨機荷載,因此還需要研究鋼筋混凝土梁在變幅疲勞荷載和隨機荷載作用下的性能研究,疲勞破壞機理,疲勞累積損傷發展規律;

        (3)鋼筋混凝土疲勞壽命預測的研究工作都是基于各種理論的基礎上,千差萬別無法統一,還沒有形成一個符合實際且易于操作的框架體系;

        (4)鋼筋混凝土結構發生銹蝕后的疲勞問題對鋼筋混凝土結構的安全使用也尤為重要,目前對銹蝕鋼筋混凝十結構的疲勞承載力、粘結滑移退化等方面的研究還不夠深入,有待加強。

        參考文獻

        [1]陳肇元.土建結構工程的安全性與耐久性[M].北京:中國建筑工業出版社,2003.

        [2]Tepfers R,and Kutti T. Fatigue strength of plain,ordinary and lightweight concrete. ACI

        J.,May 1979:635-652.

        [3]Satio M,and Imai S. Direct tensile fatigue of concrete by the use of friction grips. Journal of

        the ACI,Proc,1983,80(5):431-438.

        [4]Graf O.,and Brenner. Experiments for investigating the resistance of concrete under often

        repeated compression loads.1.Bulletin,Deutscher Ausschuss fur Stahlbeton,Berlin,1934,

        1(76):17-25.

        [5]Bennett E.W.,and Muir S. E. J.,Some fatigue tests on high-strength concrete in axial

        Compression. Magazine of Concrete Research,1967,19(59):113-117.

        [6]Jan Ove Holmen.Fatigue of Concrete by Constant and Variable Amplitude Loading[C].In:

        Fatigue of Concrete Structure,SP-75,ACI,1982:71-110.

        [7]Matsushita H,Tokumitsu Y. A Study on Compressive Fatigue Strength of Concrete

        Considered Survival Probability[J]. Proceeding of JSCE,1972,198(2):127-138.

        [8]Lan Shengrui,Guo Zhenhai. Biaxial Compression Behavior of Concrete Under Repeated

        Loading[J].Journal of Materials in Civil Engineering,1999,11(2):105-114.

        [9]朱勁松. 混凝土雙軸疲勞試驗與破壞預測理論研究[D]. 大連:大連理工大學,2003,9.

        [10]曹偉,胡建周. 混凝土多軸受壓疲勞強度分析[J]. 土木工程學報,2005,38(8):31~35.

        [11]Cornelissen H A W.Constant amplitude tests on plain concrete in uniaxial tension and tension

        compression.Stevion report SR-50,Delft University of Technology,Jan.1984:79.

        [12]呂培印. 混凝土單軸、雙軸動態強度和變形試驗研究[J]. 大連:大連理工大學,2001,

        11.

        [13]H.A.馬達洛夫著,謝君斐譯. 鋼筋混凝土受彎構件在重復荷載下的性能研究[M]. 北京:

        科學出版社,1964.

        [14]沈忠斌. 疲勞荷載作用下鋼筋混凝土受彎構件使用性能的試驗研究[D]. 東南大學碩士

        研究生學位論文,1989.

        [15]朱曉東. 重復荷載作用下鋼筋混凝土梁正截面剛度的試驗研究[D]. 東南大學碩士研究

        生學位論文,1989.

        [16]石小平,姚祖康,李華等. 水泥混凝土的彎曲疲勞特性[J]. 土木工程學報.1990,23(3):

        11-22.

        [17]Byung Hwan Oh.Fatigue Analysis of Plain Concrete in Flexure [J]. Journal of Structural

        Engneering,1986,112(2):273-288.

        [18]李士彬. 銹蝕鋼筋混凝土梁的彎曲疲勞性能和壽命預測[D]. 同濟大學博士研究生學位

        論文,2007.

        [19]宋小雷. 銹蝕鋼筋混凝土梁靜力及疲勞性能試驗研究[D]. 華僑大學碩士研究生學位論

        文,2008.

        [20]虞愛平. 不同銹蝕程度鋼筋混凝土梁疲勞性能及疲勞后承載力研究[D]. 桂林理工大學

        碩士研究生學位論文,2010.

        [21]徐沖. 超載下既有橋梁加固后疲勞性能試驗研究[D]. 浙江大學碩士研究生學位論文,

        2011.

        [22]王海超,貢金鑫,曲秀華. 鋼筋混凝土梁腐蝕后疲勞性能的試驗研究[J]. 土木工程學報,

        2005,38(11):32~38.

        [23]趙亞敏. 超載運輸對鋼筋混凝土橋梁疲勞性能的影響研究[D]. 中南大學碩士研究生學

        相關熱門標簽
        无码人妻一二三区久久免费_亚洲一区二区国产?变态?另类_国产精品一区免视频播放_日韩乱码人妻无码中文视频
      2. <input id="zdukh"></input>
      3. <b id="zdukh"><bdo id="zdukh"></bdo></b>
          <b id="zdukh"><bdo id="zdukh"></bdo></b>
        1. <i id="zdukh"><bdo id="zdukh"></bdo></i>

          <wbr id="zdukh"><table id="zdukh"></table></wbr>

          1. <input id="zdukh"></input>
            <wbr id="zdukh"><ins id="zdukh"></ins></wbr>
            <sub id="zdukh"></sub>
            亚洲国产欧美不卡在线观看 | 色婷婷色偷偷色天堂 | 日韩精品在线观看国产精品 | 在线观看国精产品一区 | 一级特黄日本少妇 | 亚洲欧美日韩中文在线v日本 |